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ABSTRACT

In this work, we address the problem of unsupervised do-
main transfer learning via an ensemble strategy in the context
of classification between multiple hyperspectral images. The
objective of domain adaption is to assign the label to an image
of interest (the target image) using the labeled samples in the
source image. The proposed method is based on the rotation-
based ensemble and transfer component analysis (TCA). In
this method, the feature space in both source and target im-
age is divided into several disjoint feature subsets. Then, the
features induced by the TCA technique in the source domain
are used as the input space to a random forest (RF) classifier.
Finally, the results achieved by each step are fused by a ma-
jority vote. We compare the proposed method, ensemble of
TCA (E-TCA), with a regular RF and an RF with the reduced
features by the TCA. Experiments on the real hyperspectral
image acquired over a Japanese mixed forest show remark-
able cross-image classification performances.

Index Terms— Domain adaptation (DA), transfer com-
ponent analysis (TCA), ensemble learning, hyperspectral im-
age classification.

1. INTRODUCTION

The quality of reference samples plays an important role in
providing high precision classification results of remotely
sensed images. However, collecting and labeling sufficient
data are very labor-intensive and tedious [1]. An effective
technique is the domain adaptation and transfer learning in
which we can use the labeled samples from another dataset to
enhance the performance. In particular, classifiers trained on
the source image with the labeled datasets are used to predict
the labels of the target image [2].

In general, the data in both source and target domains
share the same task but with different distributions. Accord-
ing to whether labeled information used or not in the tar-
get domain, transfer learning techniques are divided into two
groups: unsupervised and supervised [3]. In this work, we fo-
cus on unsupervised transfer learning because of the common
settings of real-world applications.

In the last decade, researchers have investigated a vari-
ety of approaches to domain adaptation into two categories:
1) modifying the trained classifier and 2) making a feature-
based representation. Considering the first category, Bruz-
zone et al. [4, 5] re-trained a maximum likelihood classifier
or multiple classifier systems by adjusting the parameters
to update the land cover maps. The second category aims
at learning a common feature representation that minimized
the cross-domain difference. Representative work that fol-
lows the second strategy is the transfer component analysis
(TCA) [6]. Matasci et al. [7] investigated the performance of
TCA and extended the TCA to the semi-supervised version
for cross-domain hyperspectral and high spatial resolution
remote sensing images. Experimental results demonstrate the
clear improvements over the TCA and semi-supervised TCA
(SSTCA) when compared to other methods.

Ensemble learning combines multiple based learners to
show a significantly better performance that the individual
learner [8]. Benefiting from the superiority, the ensemble
learning methods have attracted increasing attention in the re-
mote sensing community over the last several years [9]. In
order to make a successful ensemble learning method, we
should increase the accuracy of the base learners and the di-
versity within the ensemble. Such approach was exploited in
the rotation-based ensemble for hyperspectral image classifi-
cation, obtaining remarkable classification results [10, 11].

Inspired by the merits of rotation-based ensemble and
TCA, we proposed a novel ensemble of TCA (E-TCA) for
domain adaptation in hyperspectral remote sensing image
classification.

The remainder is organized as follows. In Section II, we
give the main description of TCA. The proposed ensemble
of TCA (E-TCA) is presented in Section III. The experiments
and the conclusion are given in Section IV and V, respectively.

2. TRANSFER COMPONENT ANALYSIS

Let us denote DS = {XS ,YS} = {xSi , ySi}
nSi
i be the set of

source training samples and XT == {xTi
}nTi
i be the set of

unlabeled target samples. The objective of domain adaptation
classifier is to assign a label yTi

to each pixel of XT .



TCA [6] aims at learning a shared subspace between the
source and target domains based on a reproducing kernel
Hilbert space (RKHS) using maximum mean discrepancy
(MMD) [12].

TCA finds a projection matrix W by solving the following
eigenvalue decomposition problem

KHKw = λ(KLK + µI)w (1)

where K =

(
KS,S KS,T

KT,S KT,T

)
, KS,S ,KS,T ,KT,S ,KT,T are

the kernel matrices (with the elements ofKi,j = exp(−θ||xi−
xj ||2)). H = I− 11>/(nS + nT ). The elements of matrix L
is defined as

Li,j =


1/n2S if xi, xj ∈ XS

1/n2T if xi, xj ∈ XT

−1/nSnT otherwise

The projection matrix W can be obtained from the d eigen-
vectors corresponding to the d largest eigenvalues achieved
by (1).

The d transfer components for a new test sample xtest is
computed by KtestW, where Ktest is the kernel matrix be-
tween the test sample and the (nS + nT ) samples.

3. ENSEMBLE OF TCA

The performance of ensemble learning method relies on two
essential components: the accuracy of base classifier and the
diversity within the ensemble [8]. Rotation-based ensemble is
a recent effective strategy to construct the ensemble [10, 11].

In this work, we introduce this strategy into the domain
adaption in hyperspectral remote sensing image classifica-
tion. Thus, we propose the ensemble of TCA (E-TCA),
which combines the advantages of TCA and rotation-based
ensemble together.

The training steps of the proposed method is summarized
as follows (seen in Algorithm 1)

• the feature space in both source and target domain is
randomly split into K (K = D/M ) disjoint subspace
and each space contain M features.

• TCA is applied to each subspace to achieve the projec-
tion matrix Wk and kernel matrices.

• the new training set of the source domain is formed by
concatenating M extracted features that are obtained
by rotating the source training set using the aforemen-
tioned kernel matrices and the projection matrix.

• an individual random forest (RF) classifier is trained on
the new source training set.

• the above process is repeated T times and the ensemble
with T RFs are obtained.

In the prediction phase, the kernel matrices between the target
and the sum of source and target training samples is generated
firstly. Then, the new transformed dataset of target samples is
classified by the ensemble, and the final result is assigned to
the corresponding class by using a majority voting rule.

Algorithm 1 E-TCA
Training phase
Input: {XS ,YS} = {xSi , ySi}

nSi
i : source training samples.

XT : target samples. T : number of classifiers, K: number
of subsets, M : number of features in a subset, L: base
classifier. The ensemble L = ∅.

Output: The ensemble L
1: for i = 1 : T do
2: randomly split the features in the source and target do-

mains into K subsets.
3: for j = 1 : K do
4: form the new source training set XSi,j

and target
samples XTi,j

corresponding to the subset of fea-
tures

5: using TCA to transform [XSi,j XTi,j ] with the aim of
obtaining the coefficients Ri,j =

[
w1

i,j , · · · ,wM
i,j

]
6: calculate the kernel matrices by XSi,j

, Ktraini,j =
K(XSi,j

, [XSi,j
XTi,j

])
7: end for
8: the features extracted will be given by: Fnew

i =[
Ktrain>

i,1Ri,1, · · · ,Ktrain>
i,KRi,K

]
9: train a RF classifier Li using {Fnew

i ,Y}
10: add the classifier to the current ensemble, L = L∪Li.
11: end for
Prediction phase
Input: The ensemble L = {Li}Ti . XT : target samples. Ro-

tation matrix: R.
Output: class label YT

1: for i = 1 : T do
2: for j = 1 : K do
3: generate the kernel matrices Ktesti,j =

K(XTi,j
, [XSi,j

XTi,j
])

4: generate the test features of target samples, Ftest
i =[

Ktest>i,1Ri,1, · · · ,Ktest>i,kRi,K

]
5: end for
6: run the classifier Li using Ftest

i as input
7: end for
8: calculate the confidence of each sample x in XT

for each class and assign the class label p(y|x) =
1
T

∑T
i=1 p(yi|Ftest

i ) to the class with the largest confi-
dence.

4. DATASETS AND RESULTS

A Japanese mixed forest, namely Tama Forest Science Gar-
den located in the western region of Tokyo, is selected as the
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Fig. 1. (Left) The false color composite image of hyperspectral data. (Right) Enlarged RGB images of (A) Source and (B)
target images with the corresponding ground references

Table 1. Class name and number of reference samples in the
source and target images.

No. Name Source Target

Conifer
1 Japanese cypress 875 2120
2 Japanese cedar 3327 165
3 Momi fir 282 813

Broadleaf

4 American sweetgum 733 286
5 Japanese bigleaf magnolia 380 382
6 Painted maple 403 352
7 Chinese evergreen oak 948 256
8 Japanese blue oak 1083 422
9 Konara oak 987 768

study area. The hyperspectral dataset with 72 bands was ac-
quired by the CASI-3 sensor. The ground sampling distance
is 1 m [13]. The left image of Fig. 1 is the false color com-
posite image obtained by the hyperspetral image (R: 654 nm;
G: 552 nm; B: 449 nm). The right image of Fig. 1 is the
enlarged RGB images of source (A) and target (B) areas and
the respective distributions of the reference with two major
species (nine classes).

For the TCA and E-TCA, θ is set to be the median Eu-
clidean distance among all used samples. The label samples
in both source and target images are used to find the projec-
tion achieved by TCA. Random Forest (RF) classifier is used
to train on the labeled samples in the source domain and pre-
dict the labels in the target image. For the RF, the number of
trees is set to be 50 and the number of features in a subset is
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Fig. 2. RF classification performance on the target image by
using the E-TCA with different numbers of features in a sub-
set (M ). (a) Two major species. (b) 9 classes.

Table 2. Classification results with two major species.
Name RF TCA E-TCA

Conifier 84.25 87.12 88.77
Broadleaf 83.86 82.16 88.57

OA 84.08 85.19 86.63
AA 84.05 84.87 86.38

set to be the square root of the number of the used features.
For the TCA, the range of extracted components is from 2 to
30 and we only report the best results.

Fig. 2 depicts the influence of the number of features in



Table 3. Classification results with 9 classes.
No. RF TCA E-TCA
1 61.56 73.54 79.25
2 48.48 90.91 92.12
3 7.38 11.44 12.14
4 36.71 36.36 48.25
5 31.94 39.01 39.79
6 7.10 6.25 10.23
7 31.25 28.52 29.69
8 17.54 25.12 24.88
9 30.60 28.52 30.86

OA 37.49 44.48 48.08
AA 30.28 37.74 40.80

a subset (M ) on the RF classification performance for two
major species and nine classes, respectively. The optimum
classification accuracy is reached at the small values of M .
Thus, M = 15 is used to present the class individual accura-
cies, which is shown in Tables 2 and 3. It can be seen that the
proposed E-TCA shows better performance than RF and TCA
in both global accuracies (OA and AA) and class-specific ac-
curacies (7 out of 9). For two major species, E-TCA achieves
2.55% and 1.44% improvements over RF and TCA, respec-
tively. For nine classes, the improvements are 10.59% and
3.60%, respectively.

5. CONCLUSION

In this paper, we propose a novel transfer learning method for
hyperspectral image classification. We cast the transfer learn-
ing problem as an ensemble strategy with transfer component
analysis (TCA). Experimental results show that our method
outperforms RF and TCA approaches. In the future, we will
extend our method to semi-supervised scenarios.
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Eds., pp. 135–160. Springer, 2014.

[11] J. Xia, J. Chanussot, P. Du, and X. He, “Spectral-
spatial classification for hyperspectral data using rota-
tion forests with local feature extraction and Markov
random fields,” IEEE Trans. Geosci. Remote Sens., vol.
53, no. 5, pp. 2532–2546, 2015.

[12] K. M. Borgwardt, A Gretton, M. J. Rasch, H Kriegel,
B Scholkopf, and A. J. Smola, “Integrating structured
biological data by kernel maximum mean discrepancy,”
Bioinformatics, vol. 22, no. 14, pp. e49–e57, 2006.

[13] T. Matsuki, N. Yokoya, and A. Iwasaki, “Hyperspectral
tree species classification of Japanese complex mixed
forest with the aid of LiDAR data,,” IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp.
2177–2187, May 2015.


	 Introduction
	 Transfer component analysis
	 Ensemble of TCA
	 Datasets and Results
	 Conclusion
	 Acknowledgment
	 References

