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ABSTRACT

In the hyperspectral remote sensing community, decision
forests combine the predictions of multiple decision trees
(DTs) to achieve better prediction performance. Two well-
known and powerful decision forests are Random Forest (RF)
and Rotation Forest (RoF). In this work, a novel decision for-
est, called Partial Least Square Forest (PLSF), is proposed.
In the PLSF, we adapt PLS to obtain the components for the
hyperplane splitting. Moreover, the projection bootstrap tech-
nique is used to retain the full spectral bands for the selection
of split in the projected space. Experimental results on three
hyperspectral datasets indicated the effectiveness of the pro-
posed PLSF because it enhances the diversity and accuracy
within the ensemble when compared to RF and RoF.

Index Terms— Composite kernel learning, ensemble
learning, classification, hyperspectral image.

1. INTRODUCTION

Hyperspectral sensors capture the images over narrows con-
tiguous hundreds or thousands of bands of the electromag-
netic spectrum. The detailed spectral information, as well as
high spatial resolution, provides enhanced capability for the-
matic applications, i.e., land cover classification [1]. High
dimensionality should be addressed to exploit the hyperspec-
tral datasets. Several approaches have been proposed to tackle
this issue [2, 3].

Multiple classifier systems (MCSs) or ensemble learning
has proven to be effective in the classification of hyperspec-
tral images among the currently available supervised learning
methods. It is formed by combing the predictions of multi-
ple base learners to achieve better performance than the sin-
gle learner. In order to construct a strong MCS, the individual
classifiers should be with high diversity and high accuracy [4].

Two decision tree (DT) ensemble methods, random forest
(RF) [5] and rotation forest (RoF) [6], have attracted increas-
ing attention in hyperspectral remote sensing community due
to their great classification capability, fast out of sample pre-
diction, and with slight parameter tuning [7, 8]. Two bagging
strategies, i.e., each tree is trained on bootstrapped samples,
and a subset of features is considered for the split of leaf, are
used to inject the randomness into the construction of RF [5].

In the RoF, the accuracy and diversity are promoted by us-
ing principal component analysis (PCA) to extract features in
several disjoint subsets for learning individual base DT clas-
sifiers [6]. The aforementioned techniques make RF and RoF
widely used not only in hyperspectral data analysis but also
in synthetic aperture radar (SAR) [9] and very high spatial
resolution image analysis [10].

In order to further improve the accuracy and diversity
within the ensemble, we propose Partial Least Square For-
est (PLSF), which is constructed by several individual DTs
that utilizes partial least square for the hyperplane splitting.
Moreover, the projection bootstrap technique, which retains
all spectral bands for split selection in the projected space,
results in a significant increase in accuracy of diversity.

2. PARTIAL LEAST SQUARE FOREST

Let S ≡ {1, ..., N} denote a set of integers indexing the
N pixels of a hyperspectral image; let K ≡ {1, ...,K}
be a set of K labels; let x ≡ {x1; ...; xN} ∈ RN×D
denote an image of D−dimensional feature vectors; let
y ≡ {y1, ..., yN} ∈ K be a set of labels for the N pixels;
and let D ≡ {X,Y} ≡ {(x1, y1) , ..., (xn, yn)} be the train-
ing set, where n is the number of training samples. The
objective of classification is to assign a label yi ∈ K to each
pixel i ∈ S, based on the vector xi, resulting in an image of
class label yi.

As a new DT ensemble, PLSF combines individual
oblique DTs, in which PLS is used to project the original data
and select the best split in the projected space. In this work,
we pay attention to Orthonormalized PLS (OPLS) [11, 12].

OPLS exploits the correlation between the features and
the target data by combining the merits of canonical variate
analysis and PLS [11,12]. Let {X,Y} ≡ {(x1, y1) , ..., (xn, yn)}
be the training set, where n is the number of training sam-
ples. Let Y is converted to 1-of-K labels Y ∈ In×K ,
where Yik = 1 implies the pixel i belongs to class k and
Cxy = 1

nX>Y represent the covariance between X and Y,
whereas the covariance matrix of X is given by Cxx = 1

nX>X.
W ∈ RD×d is referred as the projection matrix, thus the ex-
tracted features is achieved by X′ = XW. It should be noted
that OPLS only extracts the projection matrix from the input
data X.
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Fig. 1. PLSF

The objective of OPLS is formulated by

OPLS: maximize: Tr
{

W>CxyC>xyW
}

subject to: W>CxxW = I (1)

Let T = {t1, ..., tT } denote a PLSF composed of T
DTs ti. Each DT is composed of a set of split nodes
S = {sj}j∈J /∂J and a set of leaf nodes L = {lj}j∈∂J ,
where J is a set of node indices and ∂J ⊆ J is the subset of
leaf node indices. Each split node is defined

{
s1j , s

2
j , φj , zj

}
,

where
{
s1j , s

2
j

}
⊆ J /j are the ids of two child nodes, φj is a

weight vector used to project the input features and zj is the
point at which the splitting occurs in the projected space Xφj .

As shown in Fig. 1 and Algorithm 1, the detailed training
steps are summarized as follows:

• X is centered with zero mean and unit variance.

• the new training set
{

X′,Y ′
}

is randomly selected from
{X,Y} using Bagging technique.

• the new training set is used as the input of the GROW-
TREE algorithm (seen in Algorithm 2).

In the GROWTREE algorithm, the new training set
{

X′,Y ′
}

is selected from
{

Xj(:,λ),Y
}

by using Bagging technique, and
then is input to the OPLS. The projection matrix W obtained
from OPLS is used to produce the new features. At node j,

Algorithm 1 PLSF
Training phase
Input: {X,Y}: training samples.D: number of spectral

bands. T : ensemble size. M : number of sampling fea-
tures.

Output: CCF T = {ti}i=1,...,T

1: Centering X with zero mean and unit variance
2:
{

X′,Y ′
}
←− bootstrap sampling from {X,Y}

3: [.,S,L] = GROWTREE
(
X′,Y ′, D,M

)
4: ti = {S,L}
5: return T = {ti}i=1,...,T

Prediction phase
Input: The ensemble T = {ti}i=1,...,T . A new sample x∗.
Output: class label y∗

1: get the output ensemble using T = {ti}i=1,...,T .

2: p(y∗|x∗) = 1
T

∑T
j=1 p(y

∗|x∗ : tj)

3: y∗ = argmax
k∈{1,2,...,K}

T∑
j:tj(x∗)=k

1

we randomly select λ = min(M, |Fj |) features without re-
placement from the available feature set Fj . The split projec-
tion vector Wj is set as the column of W in which the best
split existed in the training phrase at node j. zj is the corre-
sponding split point at XWj . Furthermore, the index of the



Algorithm 2 GROWTREE

Input:
{

Xj ,Yj
}

: training samples at node j, M : number of
sampling features. Fj : available features.

Output: sub-tree root node identifier j, sub-tree discriminant
nodes Ψ, sub-tree leaf nodes Θ

1: set current node index j to an unique node identifier
2: randomly selecting λ features by taking min(M, |Fj |)

samples without replacement from Fj

3:
{

X′,Y ′
}
←− bootstrap sampling from

{
Xj(:,λ),Y

j
}

4: [W, ·] = OPLS
(
X′,Y ′

)
5: W(λ:end,λ:end) ← 0
6: U = XW
7: [ξ, zj , gain] = FINDBESTSPLIT(U)
8: φj = W(:,ξ)

9: If ∃X(i,:)φj ≤ zj then τl else τr EndIf
10:
[
s1j ,Sl,Ll

]
= GROWTREE

(
Xj(τl,:),Y

j
(τl,:)

, |Fj |,M
)

11:
[
s2j ,Sr,Lr

]
= GROWTREE

(
Xj(τr,:),Y

j
(τr,:)

, |Fj |,M
)

12: obtain
{
s1j , s

2
j , φj , zj

}
13: return [j, {Sl ∪ Sr} , {Ll ∪ Lr}]

projection giving the best split ξ is obtained from the function
FINDBESTSPLIT that is calculated by maximizing the infor-
mation gain [13]. The samples are then split into left and right
nodes according to the rule ∃X(i,:)φj ≤ zj . The tree is grown
until some stopping criterion, such as a maximum tree depth,
is reached. It should be noticed that OPLS is only performed
at the training stage while the split rule is directly used in the
test stage.

In the prediction phase, for a new sample x∗, the final
result is generated by combining the results from individual
DT in the ensemble using a majority voting rule.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1. Hyperspectral datasets

In this work, three hyperspectral datasets are used to assess
the performance of the proposed PLSF and compared with
RF and RoF classifiers.

• Kennedy space center (KSC): This dataset was ac-
quired by the AVIRIS sensor with a ground sampling
distance (GSD) of 18 m. We keep 176 bands after
removing water absorption and low SNR bands. 13
classes are used in this scene.

• Salinas: This scene was also collected by the AVIRIS
sensor over Salinas Valley, California with a GSD of
3.7 m. The area covered comprises 512 lines by 217
samples with 16 classes and 224 bands.

• Botswana. This dataset was obtained by the Hyperion
sensor on the NASA EO-1 satellite over the Okavango
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Fig. 2. Overall accuracies with different sizes of training set.
(a) KSC. (b) Salinas. (c) Botswana.

Delta, Botswana. The scene consists of 14 identified
classes and 145 bands.

3.2. Results

The ensemble size (T ) is set to be 20. The number of features
in a subset is set to be the square root of the number of the
used features and 10 for the RF and RoF, respectively. For
the PLSF, M = 9. We randomly select the training set from
the ground truth for ten Monte Carlo runs and report the mean
values.

Fig. 2 shows the overall accuracies with different sizes of
training set. Here, 10, 20, 30, 40 and 50 samples per class
are chosen to form the training set. It can be seen that PLSF
shows the best classification results in all the cases. Table. 1
presents the global and class-individual accuracies produced
by PLSF as well as RF and RoF. From this table, PLSF not
only provides the best global accuracies but also yields the
best performance for individual classes (11 out of 13, 14 out
of 16, 13 out of 14 for KSC, Salinas and Botswana).

Table 2 presents the measures such as the “OA (%)”, the
percentage average overall accuracies of the individual DT
classifier, “AOA (%)”, and the Coincident Failure Diversity
(CFD) [14]. A stronger diversity is represented by a higher
value of CFD. It is apparent that the best performance of
PLSF is attributed to the strongest diversities for all three
datasets although RoF gives the best results of AOA. It proves
that the diversity is of critical importance within the ensemble
in a practical viewpoint.

Fig. 3 compares the performances of the three decision
forests (i.e., RF, RoF, and PLSF) by using different values of
the number of features in a subset (M ). As in the detailed test,
PLSF tends to have better performance in small values of M .
In contrast, this value is data dependent for RoF.

4. CONCLUSION

In this paper, we proposed a decision tree ensemble classifier
(PLSF) for hyperspectral image classification. PLSF provides
a natural way to enhance the diversity of an ensemble by using
OPLS and the projection bagging technique. Experimental
results support the theoretical basis as mentioned above.



Table 1. Overall, average and class-specific accuracies obtained for the Kennedy Space Center, Salinas and Botswana images
when ten samples per class are used to form the training set.

Kennedy Space Center Salinas Botswana
RF RoF PLSF RF RoF PLSF RF RoF PLSF

OA 76.85 83.26 86.44 OA 79.84 83.91 85.31 OA 80.45 84.04 89.44
AA 72.71 79.87 83.22 AA 87.78 90.44 92.47 AA 82.34 85.62 90.60
κ 74.28 81.41 84.95 κ 77.72 82.15 83.70 κ 78.85 82.73 88.57

Scrub 80.78 80.85 79.84 Brocoli green weeds 1 98.18 96.49 98.00 Water 97.52 98.44 100.00
Willow swamp 73.87 85.43 86.13 Brocoli green weeds 2 97.60 94.65 99.46 Hippo grass 90.89 91.39 98.61

Cabbage palm hammock 84.57 83.75 89.49 Fallow 84.27 92.67 92.42 Floodplain grass1 86.65 88.29 96.81
Cabbage palm/oak hammock 46.11 48.29 50.40 Fallow rough plow 99.11 99.17 99.45 Floodplain grass2 83.72 91.95 94.47

Slash pine 59.50 63.17 71.61 Fallow smooth 94.75 96.01 97.56 Reeds 1 74.72 79.18 79.63
oak/broadleaf hammock 46.90 62.84 61.22 Stubble 96.06 96.65 99.59 Riparian 50.33 55.92 71.56

Hardwood swamp 89.05 92.57 92.67 Celery 97.54 98.80 99.69 Firescar2 91.27 92.93 97.26
Graminoid marsh 48.84 72.62 84.52 Grapes untrained 51.90 63.97 61.52 Island interior 87.44 89.80 93.69
Spartina marsh 77.92 83.37 94.27 Soil vinyard develop 93.22 97.18 99.25 Acacia woodlands 63.89 74.01 84.52
Cattail marsh 71.44 94.18 93.22 Corn senesced green weeds 70.88 80.44 84.30 Acacia shrublands 75.16 79.31 83.91

Salt marsh 92.96 91.98 92.20 Lettuce romaine 4wk 87.43 91.40 94.70 Acacia grasslands 86.55 86.89 90.33
Mud flats 75.19 79.64 86.34 Lettuce romaine 5wk 94.81 98.69 99.56 Short mopane 89.67 93.48 95.03

Water 98.05 99.67 100.00 Lettuce romaine 6wk 96.42 97.18 98.25 Mixed mopane 75.49 77.57 84.48
- - - - Lettuce romaine 7wk 91.97 93.17 93.74 Exposed soils 99.47 99.58 98.11
- - - - Vinyard untrained 62.82 63.10 65.04 - - -
- - - - Vinyard vertical trellis 87.43 87.50 97.03 - - -

Table 2. Comparison among RF, RoF and PLSF by using
“OA (%)”, “AOA (%)”, and diversities.

Datasets RF RoF PLSF

Salinas
OA (%) 79.84 83.91 85.32

AOA (%) 70.83 77.12 69.97
Diversity 67.37 69.93 71.85

Botswana
OA (%) 80.45 84.04 89.44

AOA (%) 66.83 73.38 72.92
Diversity 64.36 68.12 69.77

KSC
OA (%) 76.85 83.26 86.44

AOA (%) 64.32 73.26 68.33
Diversity 59.13 66.19 69.02
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Fig. 3. Sensitivity to the change of the number of features in
a subset. (a) KSC. (b) Salinas. (c) Botswana.
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