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Abstract—In recent years, enormous efforts have been made
to design image processing algorithms to enhance the spatial
resolution of hyperspectral (HS) imagery. One of the most com-
monly addressed problems is the fusion of HS data with higher-
spatial-resolution multispectral (MS) data. Various techniques
have been proposed to solve this data fusion problem based on
different theories including component substitution, multiresolu-
tion analysis, spectral unmixing, and Bayesian probability. This
paper presents a comparative review of those HS-MS fusion
techniques with extensive experiments. Ten state-of-the-art HS-
MS fusion methods are compared by assessing their fusion
performance both quantitatively and visually. Eight data sets
featuring different geographical and sensor characteristics are
used in the experiments to evaluate the generalizability and
versatility of the fusion algorithms. To maximize the fairness and
transparency of this comparison, publicly available source codes
are used, and parameters are individually tuned for maximum
performance. Additionally, the impact of spatial resolution en-
hancement on classification is investigated. Robustness against
various factors characterizing the HS-MS fusion problem is
systematically analyzed for all methods under comparison. The
algorithm characteristics are summarized, and methods with high
general versatility are clarified. The paper also provides possible
future directions for the development of HS-MS fusion.

Index Terms—Hyperspecral and multispectral data fusion,
resolution enhancement, comparative review.

I. INTRODUCTION

Upcoming spaceborne imaging spectroscopy (or hyper-
spectral) missions [1]–[6] will enable the identification

and discrimination of materials and the derivation of surface
parameters at an accuracy level unattainable by currently oper-
ational optical broadband (multispectral) satellites. Those mis-
sions are designed and expected to enhance our understanding,
possibilities, and capabilities in a wide range of applications
such as monitoring and management of natural resources, the
ecosystem, biodiversity, and disasters. Due to the inevitable
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trade-off between spatial resolution, spectral resolution, and
signal-to-noise ratio (SNR), spaceborne imaging spectrometers
are usually designed to provide data with a moderate ground
sampling distance (GSD) (e.g., 30 m; see the illustration
at the upper left of Fig. 1), limiting the range of potential
applications.

If higher spatial resolution – possibly multispectral (MS) –
data of the scene of interest is available, data fusion can be per-
formed to generate high spatial resolution hyperspectral (HS)
data (see Fig. 1). This data can be thought of as the product of
a synthetic sensor featuring the high spatial resolution of the
MS sensor and the high-spectral resolution of the HS sensor.
It allows for various new applications potentially conducted
on a global scale, which, to data, have been possible only
locally with high-spatial-resolution airborne imaging systems.
Such applications include high-spatial-resolution ecosystem
monitoring, or the high-spatial-resolution mapping of e.g.
minerals, urban surface materials, plant species, and many
others. Although the number of available satellite platforms
mounting both HS-MS imaging sensors is limited to date
[6], the increasing number and availability of high-resolution
optical satellites [7]–[9] as well as the ever improving revisit
cycles allow for acquisitions of complementary HS-MS images
during the same season and possibly under similar atmospheric
and illumination conditions. Fig. 2 shows a scatter plot of
currently operational MS satellite missions and both operating
and upcoming HS satellites over GSD (y-axis) and the number
of spectral bands between 0.4–2.5 µm (x-axis). Considering
the currently – or soon to be – available satellite pair constel-
lations, the potential synthesized high-resolution HS sensors
would fall within the purple area in the lower right corner in
Fig. 2.

A variety of HS-MS data fusion techniques have been
developed in the last decade to enhance the spatial resolution
of HS imagery as detailed in Section II. Because most investi-
gators used limited data sets with slightly different evaluation
methodologies, the generalizability and versatility of various
HS-MS fusion methods remain unknown. Loncan et al. pre-
sented a comparative study of hyperspectral pan-sharpening,
which is a special case of HS-MS fusion [10]. Mookambiga
and Gomathi [11] and Palubinskas [12] reported reviews of
resolution enhancement of HS data including HS-MS fusion;
however, no comparative experiment was provided. To the
best of the authors’ knowledge, there is no study comparing
different state-of-the-art HS-MS fusion methods with extensive
experiments sufficient to draw meaningful conclusions.

In this paper, we compare ten state-of-the-art HS-MS fusion
methods on a variety of data sets of different nature and
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Fig. 1. Concept and benefits of HS-MS data fusion. Combining the high spatial resolution information and corresponding data analysis methods in MS
data with the high spectral resolution information and corresponding material identification and discrimination capabilities opens whole new categories of
applications involving high spatial high spectral resolution data possibly on a global scale.
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Fig. 2. GSD and the number of spectral bands in 0.4–2.5 µm of spaceborne
MS (red dot) and HS (blue dot) sensors.

characteristic. The main contributions of this paper are the
following:

• Objective and fair comparison: To conduct an objective
and fair comparison, a total of eight data sets with
diversity in scenes and fusion scenarios including but not
limited to various resolution ratios and spectral overlap
between the two input images were used. Publicly avail-
able source codes are used for the experiments. All meth-
ods are optimized for maximum individual performance

in every experiment by extensive parameter tuning and
optimal algorithm setting.

• Comprehensive evaluation methodology: Both quantita-
tive and visual assessment of all fusion results are con-
ducted. A complementary selection of well-established
evaluation metrics ensure an objective comparison of the
resolution enhancement power of all investigated algo-
rithms and reveal individual drawbacks and advantages
relative to the other methods. Furthermore, application-
driven evaluation of the fused data is performed by
examining the impact of all fusion results on pixel-wise
classification tasks.

• Analysis of algorithm characteristics: Characteristics,
strengths, and drawbacks are identified and discussed for
both individual and categories of the ten state-of-the-art
HS-MS fusion algorithms with different fusion scenarios.
On the basis of the analyzed algorithm characteristics, we
present potential future directions for the development of
HS-MS fusion.

The remainder of the paper is organized as follows. Sec-
tion II is devoted to an overview of the development in HS-
MS fusion. Section III briefly outlines the ten state-of-the-art
methods for HS-MS fusion under investigation. Section IV
presents the eight data sets used in the comparative study
and the evaluation methodology. Experimental results and
discussions are provided in Section V. Section VI concludes
the paper.
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II. DEVELOPMENT IN HYPERSPECTRAL AND
MULTISPECTRAL DATA FUSION

Pan-sharpening has been widely developed and used to
enhance the spatial resolution of MS imagery by fusing the
MS data with a corresponding higher-resolution panchromatic
image [13]–[18]. A large number of pan-sharpening techniques
have been developed over the past two decades; representative
techniques can be roughly categorized as follows: 1) compo-
nent substitution (CS) [19]–[21], 2) multiresolution analysis
(MRA) [22], [23], and 3) sparse representation (SR) [18],
[24], [25]. As pan-sharpening can be considered a special
case of the HS-MS fusion problem, efforts have been made
towards generalizing existing pan-sharpening methods for HS-
MS fusion. One of the first attempts of pan-sharpening-based
HS-MS fusion was presented in [26], [27] using a wavelet
technique. However, the performance was highly dependent
on the spectral re-sampling method, which caused difficulties
in enhancing the spatial resolution of all HS band images.

Based on recent advances in pan-sharpening, more sophis-
ticated attempts have been made to adapt pan-sharpening
techniques to the general HS-MS fusion problem. Chen et
al. proposed a framework that solves the HS-MS fusion
problem by dividing the spectrum of HS data into several
regions and fusing HS and MS band images in each region
by conventional pan-sharpening techniques [28]. A synthetic
image is generated by spectral re-sampling of the MS data and
used as a high-resolution image in the spectral range that is
not covered by MS bands. In [29], [30], a recent SR-based
pan-sharpening method [18] was applied to HS-MS fusion,
before the authors demonstrated the applicability of their spec-
tral grouping concept to any pan-sharpening technique [31].
Selva et al. proposed a framework called hypersharpening
that effectively adapts MRA-based pan-sharpening methods
to HS-MS fusion by synthesizing a high-resolution image for
each HS band as a linear combination of MS band images
via linear regression [32]. It was shown that the synthesized
high-resolution bands used in hypersharpening could lead to
significantly better fusion results than a similar yet simpler
approach in which for each HS band one high-resolution MS
– namely the most correlated – band is selected from the
available MS bands rather than synthesized.

Another popular approach fuses the HS-MS images by
exploiting the inherent spectral characteristics of the scene
via a subspace spanned by a set of basis vectors or spectral
signatures of underlying materials (so-called endmembers). A
Bayesian method based on a maximum a posteriori (MAP)
estimation developed by Eismann et al., one of the first meth-
ods published in the technical literature, was a breakthrough
in terms of enhancing the spatial resolution of all HS band
images using a higher-resolution data source acquired by a
panchromatic or MS imager [33]–[36]. This method uses a
stochastic mixing model (SMM) to estimate the underlying
spectral scene characteristics and formulates a cost function
that optimizes the estimated HS data relative to the input HS-
MS images. It should be noted that the optimization of MAP-
SMM was processed in the principal component subspace.
This idea of fusing the HS-MS images based on spectral

information of both input images on a subspace has been the
main source of inspiration for many HS-MS fusion methods
developed later [37]–[39].

The principles of spectral unmixing have been used in multi-
sensor multiresolution image fusion already around 2000 [40]–
[42]. Gross and Schott proposed a method that unmixes low-
resolution HS data and sharpens the abundance maps by fusing
it with higher-resolution panchromatic data using constrained
optimization techniques [40], [41]. Zhukov et al. presented
a technique that unmixes low-resolution images using spatial
details of segmentation obtained from high-resolution images
and finally sharpens low-resolution images by assigning the
estimated endmember signatures to the corresponding high-
resolution pixels of the segmentation map [42]. In recent years,
the idea of using spectral unmixing in HS-MS fusion has been
attracting considerable attention owing to its straightforward
interpretation of the fusion process. Several unmixing-based
methods have been proposed for HS-MS fusion, resulting in
various optimization formulations which have led to state-
of-the-art fusion performance [43]–[55]. The unmixing-based
fusion idea aims at obtaining endmember information and
high-resolution abundance matrices from the HS-MS images,
respectively, under the constraints of relative sensor character-
istics, such as a spectral response function (SRF) and a point
spread function (PSF). The fused image can be reconstructed
as the product of the two resulting matrices.

Berné et al. presented an HS-MS fusion method based
on nonnegative matrix factorization (NMF) for mid-infrared
astronomy [43]. The low-resolution HS image is unmixed
by NMF, and the high-resolution abundance maps are ob-
tained from the MS image by least squares regression; the
resampled endmember signatures are fixed. Yokoya et al.
proposed coupled nonnegative matrix factorization (CNMF)
that estimates the endmember and abundance matrices via
alternating spectral unmixing based on NMF under the con-
straints of an observation model which incorporates both the
relative SRF and PSF [44], [48]. Kawakami et al. [46] and
Wycoff et al. [49] used sparse regularization on the fractional
abundances, assuming that the number of endmembers at
each pixel is small compared to the number of available
endmembers in the underlying endmember matrix. Akhtar
et al. [50] proposed a method based on dictionary learning
and sparse coding to obtain the endmember and abundance
matrices, respectively. Lanaras et al. [54] introduced a pro-
jected gradient method into the alternate updates of the two
underlying matrices. Veganzones et al. [56] demonstrated that
local image processing of the unmixing-based approach has
potential to mitigate the ill-posedness of the fusion problem
and, therefore, improve the quality of the fusion result.

Wei et al. developed a Bayesian HS-MS fusion methodology
using both a subspace transformation and a regularization in
the fusion problem to cope with the ill-posed inverse problem.
The problem formulation is based on information of the prior
distribution in the observed scene such as Gaussian or sparsity
promoted Gaussian [38], [57], [58]. Similar to MAP-SMM,
the optimization problem was formulated on a subspace cor-
responding to the principal components of the input HS data.
Recently, a Sylvester equation-based explicit solution was in-
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tegrated into the Bayesian HS-MS fusion methodology, named
the fast fusion based on Sylvester equation (FUSE) [59]. FUSE
significantly decreased the computational complexity while
achieving the same performance as the previous Bayesian HS-
MS fusion algorithms. Simões et al. proposed a method called
HySure based on vector-total-variation-based regularization of
the spatial distribution of subspace coefficients, where the sub-
space can be defined either by singular value decomposition
(SVD) or by endmember spectral signatures [39].

III. SELECTED HYPERSPECTRAL AND MULTISPECTRAL
DATA FUSION METHODS

In this comparative study, ten HS-MS fusion methods are
selected to represent the state-of-the-art in HS-MS fusion
including established methods as well as recently published
ones. All methods under comparison correspond to at least
one of the following four categories: 1) CS, 2) MRA, 3) un-
mixing, and 4) Bayesian-based approaches. The unmixing and
Bayesian-based methods fall into the same broader category of
subspace-based methods. Fig. 3(a) depicts those categories and
the correspondence with the investigated methods. Flowcharts
describing the fusion processes of the CS, MRA (hyper-
sharpening), and subspace-based approaches are illustrated in
Figs. 3(b)–(d), respectively. The properties of the ten methods
are summarized in Table I. Gram-Schmidt adaptive (GSA) [21]
is adopted as the representative CS-based pan-sharpening
method. Two MRA-based pan-sharpening methods, namely
smoothing filtered-based intensity modulation (SFIM) [22] and
generalized Laplacian pyramid (GLP) [23], are adapted to HS-
MS fusion via hypersharpening. CNMF [48], HySure [39],
Akhtar’s [50], and Lanaras’s [54] methods represent the
unmixing-based approach (Akhtar’s and Lanaras’s methods
are referred to as ECCV’14 and ICCV’15, respectively).
MAP-SMM [36] and two versions of FUSE [59] are based
on Bayesian probability. Appart from the Bayesian-based
methods, which use principal component analysis (PCA) for
subspace transformation, also the unmixing-based approaches
can be considered as subspace methods, because the dimension
of the space spanned by the endmembers in these methods
is generally smaller than the dimension spanned by the un-
known high resolution HS image. All ten methods are briefly
described below.

A. GSA
Aiazzi et al. improved CS pan-sharpening methods by

taking into account the influence of SRF on the fusion
procedure [21]. In the general CS scheme, a low-resolution
image is sharpened by adding spatial details obtained by mul-
tiplying the difference between a high-resolution image and
a synthetic intensity component by a band-wise modulation
coefficient. The improvement lies in computing the synthetic
intensity component by performing a linear regression between
a high-resolution image and lower-resolution bands to mitigate
spectral distortion. GSA integrates this technique into the GS
algorithm [20]. The most straightforward way to apply GSA to
HS-MS data fusion is to construct multiple image sets for pan-
sharpening subproblems where each set is composed of one

TABLE I
PROPERTIES OF HS-MS FUSION METHODS: TYPE OF SUBSPACE

TRANSFORMATION AND INDICATION OF THE DEPENDENCY ON THE
KNOWLEDGE OF SRF AND PSF (YES/NO).

Method Subspace SRF PSF
GSA GS No No

SFIM-HS – No No
GLP-HS – No Yes
CNMF VCA Yes Yes

ECCV’14 Spams Yes No
ICCV’15 SISAL Yes Yes
HySure VCA / SVD Yes Yes

MAP-SMM PCA No No
FUSE PCA Yes Yes

FUSE-S PCA Yes Yes

MS band and corresponding HS bands grouped by correlation-
based clustering.

B. SFIM-HS
Based on a simplified model for solar radiation and land

surface reflection, SFIM sharpens the low resolution image
by multiplying an upscaled lower resolution image by a ratio
between a higher resolution image and its low-pass filtered
version on a pixel-by-pixel basis [22]. SFIM can be performed
on individual HS bands. A high resolution image can be
either a selected MS band based on correlation analysis or
a synthesized image obtained by a linear regression of MS
bands via least squares methods, while the latter is referred to
as hypersharpening in [32]. The hypersharpening technique is
adopted in this work. The SFIM hypersharpening method is
referred to as SFIM-HS.

C. GLP-HS
In the GLP fusion scheme [23], spatial details of each

low-resolution band are obtained as the difference between
a high-resolution image and its low-pass version multiplied
by a gain factor, which can be computed either locally or
globally. In this paper, a global gain as given in [32] is
adopted. A Gaussian filter, matching the modulation transfer
function (MTF) of a lower-resolution sensor, is used for low-
pass filtering. As with SFIM, hypersharpening is used here to
effectively adapt the GLP fusion scheme to HS-MS fusion.
The GLP hypersharpening method is referred to as GLP-HS.

D. CNMF
CNMF [48] alternately unmixes the HS-MS images by

NMF [60] to estimate the spectral signatures of endmembers
and the high resolution abundance maps, respectively. CNMF
starts by unmixing the HS image using vertex component anal-
ysis (VCA) [61] to initialize the endmember signatures. Sensor
observation models that relate the two input images with the
relative sensor characteristics (i.e., SRF and PSF) are built into
the initialization of the MS signatures of endmembers and the
low-resolution abundance maps to find better local optima.
The final high-resolution HS data is obtained as the product
of the spectral signatures and the high-resolution abundance
maps.
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Fig. 3. (a) Categories of HS-MS fusion methods and correspondences to the specific methods under comparison. Flowcharts of (b) CS, (c) MRA
(hypersharpening), and (d) subspace-based approaches.

E. ECCV’14

Akhtar et al. applied dictionary learning and sparse coding
to obtain the endmembers and the high-resolution abundances,
respectively [50]. The spectral signatures of endmembers are
obtained by the online dictionary learning method proposed by
Mairal et al. [62]. A simultaneous greedy pursuit algorithm,
named G-SOMP+, was proposed to learn a sparse code, which
corresponds to the high-resolution abundances. G-SOMP+ is
processed with respect to small disjoint spatial patches. The
algorithm requires the availability of the relative SRF.

F. ICCV’15

Similar to CNMF, Lanaras’s algorithm [54] jointly unmixes
the two input images into the spectral signatures of end-
members and the associated fractional abundances. A pro-
jected gradient method was proposed to alternately update
the endmember signatures and the high-resolution abundances

by solving the two unmixing problems of the input HS-MS
images, respectively. Simplex identification via split augmented
Lagrangian (SISAL) [63] is used to initialize the endmembers
and sparse unmixing by variable splitting and augmented
Lagrangian (SUnSAL) [64] is adopted to obtain initial abun-
dances. The availability of both spatial and spectral relative
sensor characteristics is required to initialize the degraded
versions of the endmembers and abundances.

G. HySure
HySure introduced total variation regularization into the

subspace-based HS-MS fusion framework [39]. The total
variation regularization is effective in preserving edges while
smoothing out noise in homogeneous regions. The fusion prob-
lem is formulated as the minimization of a convex objective
function with respect to subspace coefficients, which can be
seen under a Bayesian approach. The subspace transformation
is derived from the low-resolution HS image either by an



IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE 6

endmember extraction technique (e.g., VCA) or by SVD,
where the former version falls into the unmixing scheme. In
this paper, we adopt the unmixing version of HySure due to
its empirically observed robust and high performance. The
convex minimization problem is solved by the split augmented
Lagrangian shrinkage algorithm (SALSA) [65], which is an
instance of the alternating direction method of multipliers
(ADMM) [66].

H. MAP-SMM

The MAP-SMM algorithm [36] adopted an SMM to esti-
mate the underlying spectral scene statistics or, more specif-
ically, the conditional mean vector and covariance matrix of
the high-resolution HS image with respect to the MS image.
The average spectrum, covariance matrix, and abundance map
of each endmember are derived from the low-resolution HS
image. A MAP objective function is formulated to optimize the
high-resolution HS data relative to the input images based on
the SMM statistics. The MAP-SMM algorithm is performed
in the principal component subspace of the low-resolution HS
image.

I. FUSE

FUSE utilizes a Sylvester equation to solve the maxi-
mization problem of the likelihoods obtained from the for-
ward observation models [59]. A closed-form solution for
the Sylvester equation improved computational performance.
FUSE can be generalized to Bayesian estimators by integrating
prior information into the fusion problem using the ADMM
and the block coordinate descent method. The relative SRF and
PSF are required as a priori knowledge and the optimization
procedure is conducted in a principal component subspace.
In this paper, naive Gaussian [59] and sparsity promoted
Gaussian [38] priors are used as prior information and the
corresponding algorithms are referred to as FUSE and FUSE-
S, respectively.

IV. DATA SETS AND EVALUATION METHODOLOGY

This section first provides brief descriptions of the eight data
sets used in the experiments. Most of the data sets are publicly
available. To validate the generalizability and versatility of
the HS-MS fusion algorithms, we ensure the diversity of the
observed scenes (e.g., vegetation, mineral, and urban) and
fusion scenarios. Next, the evaluation methodology is detailed,
including simulation procedures and quality measures.

A. Data sets

Table II summarizes the main specifications of all data sets
used in this work, which are described below in more detail.
Moreover, RGB color composites of all data sets are shown
in Fig. 4.

1) AVIRIS Indian Pines: This HS image is acquired by
the airborne visible/infrared imaging spectrometer (AVIRIS)
sensor over the Indian Pines test site in northwestern Indiana,
USA, in 1992 [67]. The AVIRIS sensor acquires 224 spectral
bands in the wavelength range from 0.4 to 2.5 µm with a
full width at half maximum (FWHM) of 10 nm. The image
consists of 512⇥614 pixels at a GSD of 20 m. We selected a
360⇥360 pixel size image (see Fig. 4(a)) and used 192 bands
after removing bands of strong water vapor absorption and
low SNRs.

2) AVIRIS Cuprite: This data set was acquired by the
AVIRIS sensor over the Cuprite mining district in Nevada,
USA, in 1995.1 The entire data set comprises five reflectance
images, and we used one of them saved in the file named
f970619t01p02 r02 sc03.a.rfl. The full image consists of
512⇥614 pixels at a GSD of 20 m. We selected a 420⇥360
pixel size image (see Fig. 4(b)) and used 185 bands after
removing noisy bands.

3) AVIRIS Moffett Field: This data set was acquired by the
AVIRIS sensor over the Moffett field in California, USA, in
1997.1 This calibrated radiance image consists of 1923⇥753
pixels at a GSD of 17 m. We selected a 360⇥360 pixel size
image (see Fig. 4(c)) and used 182 bands after removing water
absorption bands.

4) HYDICE Washington DC Mall: This image was taken
by the hyperspectral digital imagery collection experiment
(HYDICE) sensor over the Mall in Washington, DC, USA,
in 1995. The HYDICE sensor acquired 210 bands between
0.4 to 2.5 µm, and the image consists of 1280⇥307 pixels at
a GSD of 2.5 m. We selected a 420⇥300 pixel size image (see
Fig. 4(d)) and used 191 bands after removing water absorption
bands in the 0.9–1.4 µm region.

5) Hyperspec-VNIR Chikusei: The airborne HS data set
was taken by Headwall’s Hyperspec-VNIR-C imaging sensor
over Chikusei, Ibaraki, Japan, on July 29, 2014. The data
set comprises 128 bands in the spectral range from 0.363
to 1.018 µm. The scene consists of 2517 ⇥ 2335 pixels
with a GSD of 2.5 m, mainly including agricultural and
urban areas. We selected a 540⇥420 pixel size image for the
experiment (see Fig. 4(e)). The data set was made available
to the scientific community recently, including more detailed
descriptions regarding the data acquisition and processing
details, in [68].

6) ROSIS-3 University of Pavia: This data was acquired by
the reflective optics spectrographic imaging system (ROSIS-3)
optical airborne sensor over the University of Pavia, Italy, in
2003. It consists of 610 ⇥ 340 pixels with a GSD of 1.3 m. The
12 noisy bands have been removed, so that a total of 103 bands
covering the spectral range from 0.430 to 0.838 µm are used
in the experiment. The image is available as reflectance data,
and a 560⇥320 pixel size image (see Fig. 4(f)) was selected.

7) CASI University of Houston: This data set was used in
the 2013 IEEE GRSS data fusion contest [69]. The image was
acquired by an ITRES CASI-1500 sensor over the University
of Houston campus and its neighboring urban areas, with 144
bands covering the wavelength range from 0.364 to 1.046 µm.

1[Online]. Available here: http://aviris.jpl.nasa.gov/data/free data.html



IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE 7

TABLE II
DATA SET SPECIFICATIONS

Index 1 / a 2 / b 3 / c 4 / d 5 / e 6 / f 7 / g 8 / h
Site Indian Pines Cuprite Moffett Field Washington DC Chikusei Univ. Pavia Univ. Houston Rodalquilar

Original sensor AVIRIS AVIRIS AVIRIS HYDICE Hyperspec ROSIS-3 CASI HyMap
Year 1992 1995 1997 1995 2014 2003 2012 2003

Data type Radiance Reflectance Radiance DN Reflectance Reflectance Radiance Reflectance
Spectral range (µm) 0.4–2.5 0.4–2.5 0.4–2.5 0.4–2.5 0.36–1.02 0.43–0.84 0.36–1.05 0.4–2.5

Bands 224 224 224 210 128 115 144 242 (126)
Used Bands 192 185 182 191 128 103 144 167

GSD 20 20 17 2.5 2.5 1.3 2.5 10 (4)
Spatial dim. 360⇥360 420⇥360 360⇥360 420⇥300 540⇥420 560⇥320 320⇥540 261⇥867

Multispectral sensor WV-3 WV-3 QB QB WV-2 QB Sentinel-2 Sentinel-2
GSD ratio 4 5 4 4 6 8 5 3
SNR (dB) 35 35 35 35 35 35 35 –

(a) AVIRIS Indian Pines (b) AVIRIS Cuprite (c) AVIRIS Moffett Field (d) HYDICE Washington DC Mall

(e) Hyperspec Chikusei (f) ROSIS-3 University of Pavia (g) CASI University of Houston

(h) HyMap Rodalquilar

Fig. 4. Color composite images of (a) AVIRIS Indian Pines, (b) AVIRIS Cuprite, (c) AVIRIS Moffett Field, (d) HYDICE Washington DC Mall, (e) Hyperspec
Chikusei, (f) ROSIS-3 University of Pavia, (g) IEEE GRSS DFC 2013 University of Houston, and (h) HyMap Rodalquilar data sets.



IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE 8

0.5 1 1.5 2
0

0.5

1

Wavelength (Micrometer)

S
p

e
c
tr

a
l 
R

e
sp

o
n

s
e

(a) AVIRIS Indian Pines
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(b) AVIRIS Cuprite
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(c) AVIRIS Moffett Field
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(d) HYDICE Washington DC Mall
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(f) ROSIS-3 University of Pavia
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(g) CASI University of Houston
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(h) HyMap Rodalquilar

Fig. 5. Center wavelengths of HS bands (blue bars) and SRFs of MS imagers (red) for the (a) AVIRIS Indian Pines, (b) AVIRIS Cuprite, (c) AVIRIS
Moffett Field, (d) HYDICE Washington DC Mall, (e) Hyperspec Chikusei, (f) ROSIS-3 University of Pavia, (g) CASI University of Houston, and (h) HyMap
Rodalquilar data sets.

It consists of 349 ⇥ 1905 pixels with a GSD of 2.5 m. We
selected a 320⇥540 pixel size image (see Fig. 4(g)).

8) HyMap Rodalquilar: The HyMap image was acquired
over Rodalquilar, Spain, in June 2003 [70]. The HyMap sensor
collected 126 bands in the 0.4–2.5 µm wavelength range. The
scene covers a gold mining area in the Sierra del Cabo de
Gata (Cabo de Gata National Park) with a GSD of 4 m. To
use this data set for a realistic simulation scenario of EnMAP
and Sentinel-2 data fusion, the HyMap image was spatially
downgraded to a 10-m GSD and spectrally upsampled with
242 bands using linear interpolation and resampling using
EnMAP SRFs. The full simulation procedure used for this
test data set differs from the other seven data sets by means
of the end-to-end-simulation procedure [71], [72] described in
Section IV-B2. We selected a 261⇥867 pixel size image (see
Fig. 4(h)) and used 167 bands after removing water absorption
bands.

B. Simulation procedures
An accurate quality assessment of fusion data can be

performed only within a simulation study [73]. The entire
quality assessment procedure mainly comprises three steps: 1)
simulate input HS-MS images from a reference high-resolution
HS image; 2) generate a high-resolution HS image by fusing
the two input images; 3) compare the fused image and the
reference image.

The eight HS images described in Section III-A were used
as the reference images after denoising. In the literature,

the original high-resolution HS images were often used as
reference to conduct quality assessment; however, many of
them include noise, which is not suitable as reference. To
improve the reliability of quantitative evaluation, a denoising
method in [74] is applied to the original images to increase
SNRs of reference images.

For the simulation of the input images, we adopt two
simulation strategies: 1) a standard simulation that considers
spectral simulation, spatial simulation, and noise simulation;
2) an end-to-end simulation that takes into account the entire
image acquisition and processing chain starting from raw data.
The first strategy is used for the data sets #1–7 and the second
strategy is used for the data set #8.

1) Standard simulation: The flow diagram of the evaluation
methodology with the standard simulation is shown in Fig. 6.
In the standard simulation, spectral simulation is performed to
generate the MS image by degrading the reference image in the
spectral domain using MS SRFs as filters. For the diversity of
MS sensors, SRFs of four MS imagers were used for spectral
simulation, namely, WorldView-2 (WV-2) for the data set #5,
WorldView-3 (WV-3) for the data sets #1 and 2, QuickBird
(QB) for the data sets #3, 4, and 6, and Sentinel-2 VNIR bands
at a 10 m GSD for the data set #7 (see Table II). Fig. 5 shows
overlaps of SRFs between the HS-MS imagers for all data sets.
For the data sets #1, 2, 5, and 6, the MS SRFs evenly cover
most of the spectral range of the HS imager. In contrast, there
is no high-resolution MS image in the SWIR range for the
data sets #3, 4, and 8. The latter case is more challenging and
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High-resolution HS image

Observed HS image Observed MS image

Estimated high-resolution
HS image

Quality measures

Denoising

Spectral response

Add noise

Blurring and
downsampling

HS-MS fusion

Add noise

Denoising

Fig. 6. Flow diagram of the evaluation methodology, including the standard
simulation procedure (used e.g. in [56]).

was included in the experiment to investigate the impact of
the SRF overlap between HS and MS imagers on the quality
of fused data. Spatial simulation was performed to generate
the low-resolution HS image using an isotropic Gaussian PSF
with a FWHM of the Gaussian function equal to the resolution
ratio between the GSDs of both input images. Five different
GSD ratios, namely 3, 4, 5, 6, and 8, were included for spatial
simulation in the standard simulation (see Table II) to simulate
multiple realistic combinations of spaceborne HS-MS sensors,
shown in Fig. 2. After spectral and spatial simulations, band-
dependent Gaussian noise was added to the simulated HS-MS
images. For realistic noise conditions, an SNR of 35 dB was
simulated in all bands.

2) End-to-end simulation: On the basis of the data set #8,
EnMAP and Sentinel-2 L2a (orthorectified surface reflectance
data) products were simulated using the sensor end-to-end
simulation tools EeteS [71] and S2eteS [72]. These tools
comprise forward and backward simulators, which simulate
the data acquisition procedure and the calibration and pre-
processing chain, respectively, from spatially and spectrally
oversampled data to the final EnMAP and Sentinel-2 prod-
ucts [75]. The forward simulator consists of four independent
atmospheric, spatial, spectral, and radiometric modules. The
spatial and spectral modules include resampling an image in
the spatial and spectral domains using the sensor-specific PSFs
and SRFs, respectively. The radiometric module transformed
the at-sensor radiance to DN by simulating instrumental noise
and calibration coefficients. The backward simulator consists
of calibration modules such as non-linearity, dark current, and
absolute radiometric calibration and pre-processing modules
such as radiometric calibration and atmospheric correction.
Compared to the standard simulation, the end-to-end sim-
ulation can generate more realistic data sets that include
errors such as sensor-specific noise and residual errors of
atmospheric correction. Sentinel-2 VNIR images with a GSD
of 10 m (bands 2, 3, 4, and 8) were used as the MS data only,

even though the 20 m GSD SWIR images could be potentially
used additionally for enhancing the EnMAP image which is
of 30 m GSD.

C. Quality measures
We use the following four complementary and widely used

quality measures for the quantitative fusion assessment: 1)
peak signal-to-noise ratio (PSNR); 2) spectral angle mapper
(SAM); 3) erreur relative globale adimensionnelle de synthèse
(ERGAS); 4) Q2

n. This section briefly describes these mea-
sures and their characteristics.

Let X 2 RB⇥P denote the reference HS image with B

spectral bands and P pixels. X = [x1, ...,xB

]

T

= [x1, ...,xP

],
where x

i

2 RP⇥1 is the ith band (i = 1, ..., B) and x

j

2
RB⇥1 is the spectral signature of the jth pixel (j = 1, ..., P ).
ˆ

X denotes the estimated HS image.
1) PSNR: PSNR is used to evaluate the spatial reconstruc-

tion quality of each band. PSNR is the ratio between the
maximum power of a signal and the power of residual errors.
The PSNR of the ith band is defined as

PSNR(x

i

, x̂

i

) = 10 · log10
✓

max(x

i

)

2

kx
i

� x̂

i

k22/P

◆
, (1)

where max(x

i

) is the maximum pixel value in the ith ref-
erence band image. A larger PSNR value indicates a higher
quality of spatial reconstruction (for identical data, the PSNR
is infinite). Since the PSNR is a normalized value defined
at each band, it can fairly evaluate reconstruction errors of
all bands without being affected by the absolute value of the
data. We use the average PSNR with respect to bands for the
quality index of the entire fused image. We also investigate
the PSNR plot over all bands to analyze the band dependent
characteristics of the fused image.

2) SAM: The SAM index [76] is commonly used to quan-
tify the spectral information preservation at each pixel. More
precisely, SAM determines the spectral similarity (or distance)
by calculating the angle between two vectors of the estimated
and reference spectra. The SAM index at the jth pixel is
defined as

SAM(x

j

, x̂

j

) = arccos

 
x

T

j

x̂

j

kx
j

k2kx̂j

k2

!
. (2)

SAM values near zero indicate high spectral quality. We use
the average SAM value with respect to pixels for the quality
index of the entire data set. The spatial distribution of SAM
is used below to visualize location- or material-dependent the
spectral quality of the fusion results.

3) ERGAS: ERGAS provides a global statistical measure
of the quality of the fused data [77] with the best value at 0,
which is defined as

ERGAS(X,

ˆ

X) = 100d

vuut 1

B

BX

i=1

kx
i

� x̂

i

k22�
1
P

1

T

P

x

i

�2 , (3)

where d is the GSD ratio between the higher- and lower-spatial
resolution input images, and 1

P

= [1, ..., 1] 2 RP⇥1. ERGAS
calculates the band-wise normalized RMSE and multiplies it
with the ratio of GSD to account for the difficulty in the fusion
problem.
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4) Q2

n: Q2

n is a generalization of the universal image
quality index (UIQI) [78] and an extension of the Q4 in-
dex [79] to hyperspectral images based on hypercomplex num-
bers [80]. The UIQI or the “Q” index was proposed by Wang
and Bovik [78] to measure any distortion in monochromatic
images as the product of three factors: loss of correlation,
luminance distortion, and contrast distortion. The UIQI be-
tween one reference image band (x) and its corresponding
target image band (y) is defined as

Q(x,y) =

4�

xy

x̄ȳ

(�

2
x

+ �

2
y

)(x̄

2
+ ȳ

2
)

, (4)

where

x̄ =

1

P

PX

j=1

x

j

, ȳ =
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UIQI can be rewritten as
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The three components correspond to correlation, luminance
distortion, and contrast distortion, respectively. UIQI has been
designed for monochromatic images. To overcome this lim-
itation and additionally take into account spectral distortion,
the Q4 index has been developed for four-band images by
modeling each pixel vector as a quaternion [79]. Q2

n further
extends the Q4 index based on modeling each pixel spectrum
(x

j

) as a hypercomplex number, namely a 2

n-ons that is
represented as

x

j

= x

j,0 + x

j,1i1 + x

j,2i2 + ...+ x

j,2n�1i2n�1. (6)

Q2

n can be computed using the hypercomplex correlation
coefficient, which jointly quantifies spectral and spatial dis-
tortions [80].

V. RESULTS AND DISCUSSION

A. Experimental setting
To conduct a fair comparison, the fusion performance of

each method was maximized by careful parameter tuning and
optimal algorithm setting for each data set. The MATLAB
source codes of all the algorithms are publicly available.2
Parameter tuning and algorithm setting were performed as
follows.

2The source codes of GSA, SFIM, GLP, and HySure are
available at http://www.openremotesensing.net/index.php/codes/11-
pan-sharpening. The CNMF code is available at
http://naotoyokoya.com/Download.html. The ECCV’14 code is available at
http://www.csse.uwa.edu.au/⇠ajmal/code/HSISuperRes.zip. The ICCV’15
code is available at https://www1.ethz.ch/igp/photogrammetry/people/lanaras.
The MAP-SMM code is available in [36]. The FUSE code is available at
http://wei.perso.enseeiht.fr/publications.html

• The key process of hypersharpening, as used for the
methods SFIM-HS and GLP-HS, is to synthesize a high-
resolution image for each HS band using a linear re-
gression of MS bands. We consider two options for a
linear regression, 1) least squares and 2) nonnegative least
squares, and adopt an option that shows better results for
each data set. As a result, the least squares method was
used for the data sets #5, 6, and 7, and the nonnegative
least squares method was used for the data sets #1, 2,
3, 4, and 8. This suggests that the nonnegative least
squares method is suitable for data sets with limited SRF
overlaps, while the least squares method performs better
for data sets with good SRF overlaps (see Fig. 5). Note
that band selection that assigns the most correlated MS
band to each HS band was also tested along with the
synthesis of a high-resolution band and compared with
hypersharpening; the performance of hypershaprpening
was better for all tested data sets, which confirmed
the effectiveness of hypersharpening for pan-sharpening
based methods.

• We used estimated SRFs obtained by the nonnegative
least squares method [81] for all the methods that require
SRF as input (see Table I). Additional constraints, such
as smoothness of SRFs or consistency with pre-launch
SRFs, may be useful for estimating the relative SRF from
real data sets [39], [82]; however, the nonnegative least
squares method was adopted because it empirically led
to better fusion results.

• A Gaussian filter with an FWHM at GSD was used for
all the methods that require PSF except HySure. HySure
uses a PSF estimation method described in [39].

• The number of endmembers (k) is a key parameter for
unmixing-based methods. In this paper, k was set to 30
for CNMF, ICCV’15, and HySure as this number demon-
strate stable and consistently competitive performance in
all experiments and data sets.

• For ECCV’14, the number of atoms in the dictionary (k)
was set to the number of HS bands (B

h

), the number of
atoms selected in each iteration of G-SOMP+ (L) was set
to 20, and a parameter for modeling error (⌘) in dictionary
learning was set to 10

�3 after parameter tuning. Note that
dictionary learning doesn’t work well if we set ⌘ as a very
small value (e.g., 10�8 as is in the original code).

• ICCV’15 originally used SISAL to initialize endmember
spectra. We also investigated its performance with the use
of VCA and adopted the one that showed better results
for each data set. As a result, SISAL was used for the
data sets #2, 5, 6 ,7, and 8, while VCA was used for the
data sets #1, 3, and 4.

• There are several key parameters for MAP-SMM, such as
the number of subspace (k), the number of endmembers
(n

e

), and the number of mixture classes (n
m

). In this
paper, we set k = 6, k

e

= 4, and k

m

= 35, which are
experimentally confirmed as proper numbers. Note that
if the number of endmembers is large, the number of
sample spectra for a certain endmember decreases. This
results in a singular endmember covariance matrix, which
makes the SMM process impossible.
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TABLE III
ALGORITHM-SPECIFIC MAIN PARAMETERS.

Method Parameter
GSA –

SFIM-HS –
GLP-HS –
CNMF k = 30

ECCV’14 k = Bh, L = 20, ⌘ = 10�3

ICCV’15 k = 30
HySure k = 30

MAP-SMM k = 6, ne = 4, nm = 35
FUSE / FUSE-S 6  k  15

• The subspace dimension (k) is a critical parameter for
FUSE / FUSE-S. We select the optimal number for each
data set maximizing the fusion performance. Depending
on the data set, parameter tuning has shown peak perfor-
mance usually within a range of 6  k  15.

B. Visual analysis
First, we visually evaluate the quality of the fused images.

In Figs. 7–14, color composite images of the reference and
input HS images with three selected bands are shown in the
first row and those of the fusion results are presented in the
first column of the second to eleventh rows. Most of the fusion
methods considered in this paper provide good results and it is
hard to visually discern the differences between the reference
and fused images. Therefore, the errors of the fused images are
visualized with three options, namely error (difference) images
of color composites after contrast stretching, pixel-wise root-
mean-square error (RMSE) images, and SAM images from
the second to fourth columns, respectively, in the second to
eleven rows of Figs. 7–14. The color-composite error images
visualize the spatial distribution of errors in three selected
bands, where gray pixels mean no fusion error and colored
pixels indicate local spectral distortion. It is important to
reveal error characteristics of individual bands because they
have a major impact on many applications based on spectral
indices and band ratios that select very few specific bands.
The RMSE images visualize the magnitude of the error at
each pixel spectrum. The SAM images visualize the spatial
distribution of spectral angle errors. From the results, we make
six observations.

1) The methods operating on subspaces (GSA, CNMF,
ECCV’14, ICCV’15, MAP-SMM, FUSE, and FUSE-
S) show material dependent errors resulting in visible
spatial structures in the color-composite error images.
This is because the accuracy of the fusion process can
be determined at each pixel by the reconstruction error
of each spectral signature via subspace representation.

2) The color-composite error images of GSA, SFIM-HS,
GLP-HS, and MAP-SMM include mainly random pat-
terns as to be seen in Figs. 7 and 8. Since those
four methods do not include implicit denoising in their
algorithms, noise can be contained in the fused images
if the denoising post-processing fails to remove all the
noise. The denoising post-processing is important for
these four methods. Its impact is investigated below in
Section IV-D.

3) SFIM-HS, MAP-SMM, and FUSE show block error
patterns in Figs. 11, 12, and 13. This can be ex-
plained by the fact that those three methods directly
use information obtained from the low-resolution HS
image or adopt local processing in a shifting window.
SFIM-HS estimates a high-resolution image by modulat-
ing an nearest-neighbor-upscaled low-resolution image.
MAP-SMM adopts statistical information of spectral
signatures based on classification of the low-resolution
HS image in the fusion process. FUSE optimizes the
high-resolution coefficient matrix on a block-by-block
basis [59].

4) GSA, SFIM-HS, and GLP-HS show edge error patterns,
particularly in Figs. 9 and 10. This is because those three
methods sharpen the low-resolution image by adding
spatial details obtained either by calculating the differ-
ence between the high-resolution image and the upscaled
low-resolution synthetic image (in the case of GSA) or
by multiresolution analysis of the high-resolution image
(in the cases of SFIM-HS and GLP-HS).

5) ECCV’14 shows comparatively poor results even after
extensive parameter tuning. This is particularly evident
in the tests with data sets #3, 4, and 8 (see Figs. 9, 10,
and 14), where the SRF overlaps between the two
imagers are limited. This lack in performance can be
tracked down to the estimation of high-resolution abun-
dances which is only based on the MS image and
sparsity prior information. The estimation result is likely
unreliable because this sparse regression problem is
severely ill-posed.

6) In SAM images, all methods show spatial patterns and
they are correlated to each other for some of the data sets
(e.g., the data sets #5–8). SAM values are generally high
for pixels that correspond to materials with low intensity
(DN, radiance, or reflectance) values due to low SNRs.

C. Quantitative evaluation

We further investigate the quality of the entire resolution-
enhanced HS data via quantitative measures. The quality of the
fused images was assessed by using the four quality measures
described in Section IV-C. Tables IV–VI show the quality
measures of the fused data sets obtained by the ten methods
for the data sets #1–3, #4–6, and #7–8, respectively. The best
results are shown in bold type and the second best results
are indicated with underlines. From the tables, we make five
observations.

1) The hypersharpening methods generally demonstrate
competitive performance. In particular, when the MS
SRFs cover the spectral range of the HS imager in a
balanced manner and the number of MS bands is small
(e.g., the data sets #5, 6, and 7), the hypersharpening
methods outperform many of the other methods.

2) Several subspace-based methods (CNMF, ICCV’15,
HySure, and MAP-SMM) show good performance for
the data sets #1 and 2, outperforming the hypersharp-
ening methods. This is because the estimation accuracy
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Fig. 7. AVIRIS Indian Pines data (data set #1): (1st row) Color composite
images of reference and input HS images are displayed for a 240⇥240 pixels
sub-area using 2.20, 0.80, and 0.46 µm for red, green, and blue, respectively.
(2nd-11th rows) Color composites of fused images (1st column), error images
relative to the reference data visualized by differences of color composites
(2nd column), RMSE (3rd column), and SAM images (4th column).
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Fig. 8. AVIRIS Cuprite data (data set #2): (1st row) Color composite images
of reference and input HS images are displayed for a 240⇥240 pixels sub-area
using 2.20, 1.6, and 0.57 µm for red, green, and blue, respectively. (2nd-11th
rows) Color composites of fused images (1st column), error images relative to
the reference data visualized by differences of color composites (2nd column),
RMSE (3rd column), and SAM images (4th column).
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Fig. 9. AVIRIS Moffett Field data (data set #3): (1st row) Color composite
images of reference and input HS images are displayed for a 240⇥240 pixels
sub-area using 1.24, 0.86, and 0.40 µm for red, green, and blue, respectively.
(2nd-11th rows) Color composites of fused images (1st column), error images
relative to the reference data visualized by differences of color composites
(2nd column), RMSE (3rd column), and SAM images (4th column).
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Fig. 10. HYDICE Washington DC Mall data (data set #4): (1st row) Color
composite images of reference and input HS images are displayed for a
240⇥240 pixels sub-area using 2.20, 1.60, and 1.01 µm for red, green, and
blue, respectively. (2nd-11th rows) Color composites of fused images (1st
column), error images relative to the reference data visualized by differences
of color composites (2nd column), RMSE (3rd column), and SAM images
(4th column).
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Fig. 11. Hyperspec Chikusei data (data set #5): (1st row) Color composite
images of reference and input HS images are displayed for a 240⇥240 pixels
sub-area using 0.80, 0.67, and 0.55 µm for red, green, and blue, respectively.
(2nd-11th rows) Color composites of fused images (1st column), error images
relative to the reference data visualized by differences of color composites
(2nd column), RMSE (3rd column), and SAM images (4th column).
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Fig. 12. ROSIS-3 University of Pavia data (data set #6): (1st row) Color
composite images of reference and input HS images are displayed for a
240⇥240 pixels sub-area using 0.67, 0.57, and 0.46 µm for red, green, and
blue, respectively. (2nd-11th rows) Color composites of fused images (1st
column), error images relative to the reference data visualized by differences
of color composites (2nd column), RMSE (3rd column), and SAM images
(4th column).
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Fig. 13. CASI University of Houston data (data set #7): (1st row) Color
composite images of reference and input HS images are displayed for a
240⇥240 pixels sub-area using 0.65, 0.55, and 0.45 µm for red, green, and
blue, respectively. (2nd-11th rows) Color composites of fused images (1st
column), error images relative to the reference data visualized by differences
of color composites (2nd column), RMSE (3rd column), and SAM images
(4th column).
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Fig. 14. HyMap Rodalquilar data (data set #8): (1st row) Color composite
images of reference and input HS images are displayed for a 240⇥240 pixels
sub-area using 2.20, 1.20, and 0.66 µm for red, green, and blue, respectively.
(2nd-11th rows) Color composites of fused images (1st column), error images
relative to the reference data visualized by differences of color composites
(2nd column), RMSE (3rd column), and SAM images (4th column).
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Fig. 15. Comparison of PSNRs between the ten HS-MS fusion algorithms for the (a) AVIRIS Indian Pines, (b) AVIRIS Cuprite, (c) AVIRIS Moffett Field,
(d) HYDICE Washington DC Mall, (e) Hyperspec Chikusei, (f) ROSIS-3 University of Pavia, (g) CASI University of Houston, and (h) HyMap Rodalquilar
data sets.

of high-resolution subspace coefficients or abundances
increases as the number of MS bands increases.

3) The performance of the unmixing-based methods (ex-
cept ECCV’14) is good and stable as a whole. In
particular, the unmixing-based methods outperform the
Bayesian methods when the SRF overlap is low (e.g.,
the data sets #3, 4, and 8). This result suggests that it is
better to process the data fusion in the original spectral
space rather than the projected space for the spectral
ranges without MS bands.

4) The unmixing-based methods (except ECCV’14) show
their advantage in the spectral quality measured by SAM
for all data sets.

5) The performance of ECCV’14 is limited when there is a

large spectral range covered by the HS sensor but not by
the MS bands (data sets #3, 4, and 8), which confirms
the fifth observation in the visual analysis.

Fig. 15 shows PSNR plots over the HS bands. PSNR plots
reveal reconstruction errors in each band separately. Many
of the considered methods show comparable results. As an
overall trend, the PSNR values are very good (> 40 dB)
in the spectral range covered by the MS bands, whereas
they dramatically decrease in the spectral ranges not covered
by the high-resolution sensor (e.g., the SWIR range in the
data sets #3, 4, and 8). GSA shows low PSNR values in
spectral regions missing MS bands (see Fig. 15(e)(f)(g)). This
is because those spectral bands are usually lowly correlated
with the corresponding high-resolution images. For instance,
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GSA is simply applied to HS-MS fusion by solving multiple
pan-sharpening problems after grouping HS bands with respect
to one MS band at a time based on correlation analysis. There
is room for improvement by performing more detailed spectral
grouping (e.g., [28], [31]) and synthesizing high-resolution
images as hypersharpening. The method of grouping remains
an open issue. ECCV’14 shows good PSNR values in the
spectral ranges covered by MS bands. On the other hand, they
dramatically decrease in the other spectral ranges, which is
possibly caused by inaccurate estimation of high-resolution
abundances.

D. Robustness analysis
The robustness of all methods under comparison against

noise, SRF overlap, GSD ratios, and misregistration are sys-
tematically analyzed as follows.

1) Noise robustness: Fig. 16 shows the impact of denois-
ing to the overall fusion quality using PSNR and SAM as
quality measures. It demonstrates that the denoising post-
processing consistently improves the performance of GSA,
SFIM-HS, GLP-HS, and MAP-SMM while neither improv-
ing nor worsening the fusion results produced by the other
methods. This observation can be explained by the fact that
CNMF, ECCV’14, ICCV’15, HySure, FUSE, and FUSE-S
all operate on a subspace. This meas that the dimension of
their fusion result is only as large as the dimension of the
corresponding underlying subspace. In case of unmixing based
methods, this dimension is given by the pre-defined number of
endmembers. Any denoising method reduces the dimension of
the supposedly high dimensional noisy data to some extend.
Now, subspace-based methods naturally imply denoising pow-
ers already. Therefore, depending on the denoising technique
at hand, post-denoising does not affect those fusion results.
On the other hand, this observation affirms that denoising
post-processing is essential in the evaluation methodology to
fairly compare resolution-enhancement performance of differ-
ent approaches, whenever HS-MS fusion simulations take into
account additive noise for input images.

2) SRF overlap: To further investigate the impact of SRF
overlap on the quality of fused images, HS-MS fusion was
performed on the AVIRIS Cuprite data using the following
three scenarios of WV-3 MS bands: 1) VNIR-SWIR 16 bands
2) VNIR 8 bands; and 3) SWIR 8 bands.

Figs. 17(a) and 17(b) presents PSNR and SAM, respectively,
with the three aforementioned scenarios of MS bands. As can
be expected, in the second and third scenarios, the fusion
performances of all methods decrease compared to those in
the first scenario. In particular, the Bayesian methods and
ECCV’14 show significant degradation in both PSNR and
SAM, whereas the pan-sharpening-based methods, CNMF,
ICCV’15, and HySure present relatively stable results. This
finding suggests that HS-MS fusion should be performed
on the original hyperspectral features rather than linearly
transformed features such as principal components, if the SRF
overlap is relatively little.

3) GSD ratio: We examine the robustness of the ten HS-
MS fusion algorithms against the GSD ratio using the Hyper-
spec Chikusei data set. Figs. 17(c) and 17(d) show PSNR and
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Fig. 16. Impact of denoising on quality assessment of fused data using (a)
PSNR and (b) SAM.

SAM for the ten fused images with three cases of the GSD
ratio, i.e., three, six, and ten. As the GSD ratio increases,
the fusion performances decrease in general. For both quality
measures, the hypersharpening methods, CNMF, and HySure
show the most robust results.

4) Misregistration: The robustness against misregistration
is analyzed using the Hyperspec Chikusei data set. We simu-
lated two cases of global misregistration between the input HS-
MS images by shifting one of them three and six pixels in the
higher resolution in both horizontal and vertical directions. The
fusion results are compared to those without misregistration.
We assumed that the reference image is co-registered to the
MS image.

Figs. 17(e) and 17(f) show PSNR and SAM for all methods
with the perfect image registration and the two cases of mis-
registration. The fusion performances significantly decrease
as the degree of misregistration increases, which suggests the
importance of image registration as preprocessing in practice.
Noticeably, ECCV’14 and ICCV’15 show relatively robust
performances against misregistration. Those two algorithms
optimize the high-resolution abundances based on the MS
image at the end of the fusion procedure. Therefore, the fused
images are spatially more consistent with the MS image. On
the other hand, the other fused images are biased to the HS
image, leading to higher sensitivity to misregistration given
that the reference image is co-registered to the MS image.
The reasons for that are two-fold: the other subspace-based
algorithms optimize the fused images so that the spatially
degraded versions of the fused data are consistent with the
input HS image; the pan-sharpening-based algorithms add
spatial details to the input HS image.

E. Impact of HS-MS fusion on classification
Finally, the quality of the fused images is indirectly vali-

dated via pixel-wise classification, which is one of the most
relevant topics in the analysis of HS remote sensing data.
Since the University of Pavia and University of Houston
data sets have been widely used for validating classification
performance in the HS image processing community owing
to the availability of ground truth information, we perform
classification on those two data sets. The classification per-
formances obtained using the fused images are compared to
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Fig. 17. Robustness of all methods under comparison against SRF overlap (left: (a) and (b)), GSD ratio (middle: (c) and (d)), and misregistration (right:
(e) and (f)) measured by PSNR (top: (a), (c), and (e)) and SAM (bottom: (b), (d), and (f)) for Hyperspec Chikusei data. Fusion results with three scenarios
indicated by blue, green, and red bars are compared for each sensitivity analysis.

those obtained using the reference and input HS-MS images.
Support vector machines (SVMs) [83] and rotation forests
(RoFs) [84] were adopted as classifiers because of their good
performance for classifying HS data with a small number of
training samples [85], [86]. The class names and numbers of
training and test samples are summarized in Table VII. The
classification performance is quantitatively validated using the
overall accuracy (OA), the average accuracy (AA), and the
kappa coefficient (). Since training samples were randomly
selected, we repeated the classification test ten times.

Table VIII shows the results of average OA, AA, and 

under different trials for the University of Pavia and University
of Houston data sets. Fig. 18 presents the classification maps
of one trial for the two data sets obtained by RoF using the
reference, HS, MS, and HySure-fused images together with the
test sample maps. From the results, we make four observations:

1) The classification accuracies obtained by RoF using
most of the fused images (except ECCV’14) are higher
than those using the input HS-MS images, which demon-
strate the benefit of HS-MS fusion in the presented
classification tasks. This is also visually demonstrated in
Fig. 18. The classification maps of HySure show much
better spatial details compared with those of the input
HS images. Although the classification maps of the input
MS images are spatially detailed, the classification maps
of HySure demonstrate better material discrimination

capabilities than those of the MS images as shown in,
for example, meadows and self-blocking bricks in the
University of Pavia data set.

2) The average OA, AA, and  are largely consistent
with the fusion quality assessment results reported in
Tables V and VI. For example, HySure led to very good
classification results whereas ECCV’14 resulted in poor
classification accuracies for both data sets.

3) Noticeably, for some methods the relative classifica-
tion performance does not confirm the ranking in the
statistical quantitative assessment tests above. GSA,
for instance, showed a high potential for classification
purposes even though it was not competitive in the
previously conducted quantitative assessment tests.

4) Some of the fused images led to higher classification
accuracies than those of the reference images. This is
mainly due to the denoising effect of HS-MS fusion
or denoising post-processing. Higher SNRs of the fused
images can mitigate salt-and-pepper misclassified pixels.

It should be noted that classification-based validation of
HS-MS fusion results does not reflect the absolute quality of
fused data; firstly, because ground-truth information is only
available for a comparatively small spatial subset of the data,
and, secondly, because of the many factors and steps in the
data preprocessing chain that may influence the classification
capabilities relative to the ground-truth data. Characteristics
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of applications and data analysis methods highly influence
the validation results. It is possible, for instance, to design
a fusion method specifically for one classification, application
or data analysis scenario for which it incorporates as much
information in its underlying mathematical fusion model as
available. Dispite its presumably outstanding performance
in that scenario, it would certainly fail in a more diverse
and comprehensive testing setup like the one presented in
this paper. If one is interested in finding a fusion method
whose high-resolution data output is particularly suitable for
SVM or RoF-based classification, the performance comparison
presented in this Section V-E provides a good starting point
for a more-indepth study tailored to the scenario of interest.

VI. CONCLUSIONS AND FUTURE LINES

In this paper, we presented a comparative study of HS-
MS fusion methods for the resolution enhancement of HS
imagery. Ten state-of-the-art HS-MS fusion methods based on
four different approaches (CS, MRA, unmixing, and Bayesian)
were analyzed, assessed and compared using visual, quanti-
tative, and classification-based means of evaluation. Publicly
available program codes were used while performing careful
parameter tuning at optimal individual algorithm settings. To
evaluate the generalizability and versatility of HS-MS-fusion
performance, eight simulated data sets were used in the exper-
iments based on various representative fusion scenarios. The
overall fusion characteristics of all methods under comparison
regarding performance and robustness are summarized in Ta-
ble IX. Those results are primarily derived from a quantitative
assessment of the fusion results under various fusion scenarios,
including variations in

• imaging sensor types and sensor combinations,
• spatial parameters such as the resolution ratio between the

two input images and the fusion performance robustness
against misregistration in the data, and

• spectral parameters such as the spectral coverage of
the HS sensor (i.e., VNIR or VNIR-SWIR) and the
relative spectral overlap with the MS sensor (i.e., different
numbers and spectral responsivities of MS bands).

It can be noted that, in the majority of fusion scenarios, the
ranking of the ten analyzed methods, which results from the
individual performance evaluations, does not change signifi-
cantly. In particular, the visual and quantitative statistical com-
parisons are mostly consistent. Remarkably, the classification-
based quality assessment revealed that some of the fusion
methods, which showed good stable and robust overall per-
formances throughout all tests based on statistical metrics,
did not achieve competitive scores in the classification-based
comparisons. The method which showed the most consistent
and high performance in all tests including visual, statistical
and classification-based assessment is the Hyperspectral Su-
perresolution (HySure) method by Simões et al. [39]. In the
overall comparison, HySure is closely followed by CNMF and,
further, by the hypersharpaning adapted pan-sharpening-based
methods GLP-HS and SFIM-HS.

More specific findings regarding the individual methods
under comparison can be summarized as follows.

• Algorithms that were originally designed for pan-
sharpening and adopted to the HS-MS fusion problem
by hypersharpening are well competitive with methods
that are specifically developed for HS-MS data fusion. In
particular, the methods SFIM-HS and GLP-HS showed
stable results above average in the majority of fusion
problems, especially when the spectral range of the HS
sensor is widely covered by MS bands.

• Unmixing-based methods (CNMF and HySure) demon-
strated good and stable overall fusion performance
throughout all tests. Particularly, outstanding results are
obtained when the SRF overlap is limited, e.g., if a
VNIR-SWIR HS sensor is combined with a purely VNIR
MS sensor. For both methods, caution is advised in the
high-resolution abundances estimation step; outstanding
results could be achieved due to the minimization of the
unmixing reconstruction errors with respect to both HS-
MS images rather than only the MS image (as done
e.g. by ECCV’14). This difference made CNMF and
HySure preserve the consistency between the HS and
fused images better than ECCV’14. A clear advantage
of HySure over CNMF was observed in the classification
tests, in which HySure maintained its previously shown
performance superiority while CNMF revealed a flaw
not visible in the tests based on established assessment
criteria.

• Bayesian methods based on linear subspace transforma-
tions (FUSE and FUSE-S) showed good quantitative and
visual performance especially if the SRF overlap between
the two sensors is not too limited. A degradation in
performance can be observed when the spectral range of
the HS sensor is largely uncovered by MS bands. The
classification capabilities are similar to, yet a little worse
than, those attained by CNMF.

• Additive noise in the simulated input HS-MS images
has a significant impact on the fusion quality as some
methods perform denoising implicitly while others do
not. Therefore, denoising is necessary for the evalua-
tion methodology to compare the resolution-enhancement
performance of different algorithms fairly. This is rarely
done in the literature, which is one of the reasons why
many comparisons are not doubtlessly representative.

• Most of the presented methods (except ECCV’14)
demonstrated the benefit of HS-MS fusion in classifi-
cation applications. That is, the classification accuracy
of the fusion results exceed the accuracy achieve by the
individual input HS-MS images.

It is worth noting that hypersharpening and unmixing-
based methods presented similar performances in terms of
quantitative quality measures, while different characteristics
of reconstruction errors were observable in the visual analysis.
A possible future direction for further performance improve-
ment lies in developing hybrid approaches that combine the
advantages of different classes of methods [87], such as MRA-
based hypersharpening and unmixing-based approaches [88].
Comprehensive modeling and compensation of realistic noise
and registration errors are still widely ignored in the fusion
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community [89]. One reason for the superior performance
of HySure is the algorithm’s implicit denoising capacity.
However, there is still much potential for robustness improve-
ment when accounting for more error sources, such as partial
coverage of one input image by clouds or seasonal differences
between the acquisitions. In addition, an optimal design of HS-
MS sensors capable of acquiring high-resolution HS data can
be of interest for future optical Earth observation missions, as
such data opens new fields of applications on a global scale,
which have been explorable only locally by airborne sensors
so far. Further research with real data sets will be needed
to verify the practicability of HS-MS fusion methods for the
upcoming satellite missions.
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TABLE IV
QUALITY MEASURES FOR AVIRIS INDIAN PINES, CUPRITE, MOFFETT FIELD DATA SETS

AVIRIS Indian Pines (data set #1) AVIRIS Cuprite (data set #2) AVIRIS Moffett Field (data set #3)
Method PSNR SAM ERGAS Q2n PSNR SAM ERGAS Q2n PSNR SAM ERGAS Q2n

GSA 40.0997 0.96775 0.44781 0.95950 39.2154 0.98265 0.37458 0.98254 32.865 2.0942 5.019 0.87563
SFIM-HS 40.7415 0.84069 0.40043 0.91297 40.8674 0.79776 0.31375 0.97017 34.3216 2.1074 5.2404 0.84828
GLP-HS 41.2962 0.82635 0.37533 0.95236 40.8240 0.80250 0.31570 0.97838 35.3179 1.9693 4.9378 0.8562
CNMF 41.5609 0.64222 0.36194 0.92271 42.9796 0.58443 0.25800 0.98498 36.762 1.8522 4.0129 0.85706

ECCV’14 39.7953 1.1009 0.45227 0.90626 38.8021 1.084 0.40064 0.95788 27.9978 4.7954 20.0605 0.65486
ICCV’15 41.1837 0.78214 0.41192 0.97398 42.1053 0.63276 0.28777 0.97526 35.6101 1.9565 4.9568 0.83513
HySure 42.4427 0.62333 0.32816 0.93202 43.7244 0.5464 0.23543 0.97883 36.2031 1.7582 4.7462 0.85722

MAP-SMM 42.7386 0.70908 0.33592 0.97803 41.4749 0.69567 0.30736 0.97342 34.5236 2.393 5.759 0.75134
FUSE 39.9802 0.83195 0.44434 0.86653 41.0701 0.78035 0.32012 0.97706 34.6202 2.448 5.2054 0.75063

FUSE-S 40.0461 0.82884 0.44239 0.86613 41.3807 0.74671 0.30958 0.97852 35.1967 2.3727 4.8255 0.76018

TABLE V
QUALITY MEASURES FOR HYDICE WASHINGTON DC MALL, HYPERSPEC CHIKUSEI, AND ROSIS-3 UNIVERSITY OF PAVIA DATA SETS

HYDICE Washington DC Mall (data set #4) HyperSpec Chikusei (data set #5) ROSIS-3 University of Pavia (data set #6)
Method PSNR SAM ERGAS Q2n PSNR SAM ERGAS Q2n PSNR SAM ERGAS Q2n

GSA 36.6009 2.4435 3.5625 0.96497 41.5463 1.5657 1.4617 0.88574 38.1556 3.7202 1.1155 0.74404
SFIM-HS 38.0962 1.8035 3.2343 0.97287 46.5981 1.3189 1.2638 0.9193 42.2393 2.6187 0.76399 0.8972
GLP-HS 38.1395 1.7661 3.1141 0.97451 46.9134 1.2181 1.2806 0.94997 42.3431 2.609 0.75526 0.89446
CNMF 38.605 1.7065 3.1321 0.97465 46.4972 1.2497 1.5042 0.95476 42.1934 2.5797 0.79514 0.87335

ECCV’14 34.5833 2.4785 6.61 0.92956 43.9058 1.4829 1.6739 0.94491 40.1176 3.2864 1.012 0.84024
ICCV’15 37.4458 1.7878 3.689 0.97081 42.4743 1.3365 1.7022 0.91982 39.7306 2.7444 0.94646 0.77691
HySure 38.1268 1.8097 3.4737 0.9684 47.0792 1.1772 1.5085 0.95239 42.1988 2.7786 0.80787 0.89009

MAP-SMM 35.5975 2.2082 3.7834 0.96061 43.2669 1.3143 1.4454 0.9133 39.9661 2.8757 0.91774 0.83684
FUSE 36.9354 2.2575 3.4737 0.96468 45.4068 1.4716 1.6136 0.92394 41.7546 2.8512 0.83303 0.88302

FUSE-S 37.8734 2.0675 3.2542 0.96876 46.6515 1.4246 1.5873 0.95185 42.6484 2.6944 0.77587 0.90354

TABLE VI
QUALITY MEASURES FOR CASI UNIVERSITY OF HOUSTON AND HYMAP RODALQUILAR DATA SETS

CASI University of Houston (data set #7) HyMap Rodalquilar (data set #8)
Method PSNR SAM ERGAS Q2n PSNR SAM ERGAS Q2n

GSA 45.0846 2.0723 1.1642 0.98577 40.2013 2.6597 1.938 0.63895
SFIM 47.2461 1.4961 1.016 0.98687 38.4778 2.6692 2.0811 0.58584

GLP-HS 47.2508 1.4733 1.0169 0.98697 38.4883 2.6506 2.0715 0.59433
CNMF 47.1019 1.526 1.3246 0.97505 41.0361 2.7109 2.0549 0.70558

ECCV’14 44.0313 2.3929 2.288 0.96507 35.571 4.6443 3.9914 0.54574
ICCV15 44.1182 1.4627 1.2901 0.98477 41.0904 2.6723 1.9285 0.64059
HySure 47.6637 1.4437 1.1197 0.98353 41.2454 2.6787 1.9078 0.70869

MAP-SMM 45.319 1.6696 1.1659 0.98408 37.178 2.7115 2.259 0.51056
FUSE 46.3679 1.6894 1.2315 0.97896 38.4123 2.7154 2.142 0.60954

FUSE-S 46.7968 1.5971 1.159 0.98073 38.8257 2.6914 2.078 0.60131

TABLE VII
CLASS NAMES AND NUMBERS OF TRAINING AND TEST SAMPLES FOR THE UNIVERSITY OF PAVIA AND UNIVERSITY OF HOUSTON DATA SETS.

Data University of Pavia University of Houston
No. Name Train Test Name Train Test
1 Asphalt 10 5577 Healthy grass 9 384
2 Meadows 10 9920 Stressed grass 9 199
3 Gravel 10 2066 Trees 9 507
4 Trees 10 2655 Soil 9 227
5 Painted metal sheets 10 1335 Water 9 143
6 Bare soil 10 5019 Residential 9 165
7 Bitumen 10 1320 Commercial 9 308
8 Self-blocking bricks 10 3590 Road 9 302
9 Shadows 10 937 Highway 9 118

10 – – – Parking lot 1 9 365
11 – – – Parking lot 2 9 215
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TABLE VIII
OVERALL CLASSIFICATION ACCURACY FOR THE ROSIS-3 UNIVERSITY OF PAVIA AND CASI UNIVERSITY OF HOUSTON DATA SETS.

Data set University of Pavia University of Houston
Classifier SVM RoF SVM RoF
Accuracy OA AA  OA AA  OA AA  OA AA 

Reference 69.51 76.92 63.59 70.35 76.94 64.77 74.54 72.95 71.51 78.47 77.06 75.86
HS 70.03 70.45 64.22 65.85 67.15 59.27 73.65 72.55 70.56 67.56 66.11 63.84
MS 64.66 71.82 57.92 64.79 72.39 58.30 71.71 70.59 68.40 71.70 70.12 68.33

GSA 75.35 80.77 70.63 80.41 84.44 76.61 72.20 70.81 68.90 77.07 76.18 74.34
SFIM-HS 71.91 77.82 66.49 74.79 80.18 70.02 71.96 70.35 68.65 73.29 71.67 70.10
GLP-HS 74.34 80.03 69.39 75.67 81.22 71.10 72.21 70.38 68.89 74.33 72.79 71.26
CNMF 69.32 76.65 63.62 74.27 78.95 69.35 72.27 71.15 69.01 74.57 73.10 71.54

ECCV’14 63.70 72.80 57.19 64.62 71.69 58.17 70.13 69.05 66.64 69.64 67.58 66.01
ICCV’15 72.05 78.24 66.72 76.14 80.85 71.59 75.10 73.60 72.15 74.92 73.17 71.93
HySure 74.02 80.04 69.10 80.45 84.94 76.62 75.18 73.32 72.22 79.48 77.91 77.03

MAP-SMM 71.95 79.04 66.68 74.31 80.15 69.43 71.09 70.12 67.71 74.14 72.88 71.05
FUSE 71.10 77.76 65.54 74.17 79.44 69.27 71.67 70.66 68.36 73.47 72.14 70.32

FUSE-S 69.42 76.94 63.64 73.72 79.04 68.77 71.29 69.94 67.90 73.16 71.73 69.96

Test samples Reference (OA: 72.6%) MS (OA: 64.6%)HS (OA: 62.4%) HySure (OA: 83.7%)
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Test samples Reference (OA: 74.8%) MS (OA: 69.9%)HS (OA: 67.0%) HySure (OA: 78.5%)

Fig. 18. Classification maps of reference, HS, MS, and HySure images obtained by rotation forests for (top) University of Pavia and (bottom) University of
Houston data sets.

TABLE IX
PROS AND CONS OF ALL METHODS UNDER COMPARISON. ONE, TWO, OR THREE • SIGNS MEAN LOW, MEDIUM AND HIGH.

Performance Robustness
Method General Spatial Spectral Noise SRF GSD Misreg. Material

GSA •• •• •• • • • • •• • •
SFIM-HS •• • • • • • • • • • • • • • • • • •
GLP-HS • • • • • • • • • • • • • • • • • • • •
CNMF • • • • • • • • • •• • • • • • • • ••

ECCV’14 • •• • •• •• •• •• •
ICCV’15 •• •• • • • •• • • • •• •• ••
HySure • • • • • • • • • • • • • • • • • • • ••

MAP-SMM •• •• •• • •• • • • • ••
FUSE •• •• •• •• •• •• • ••

FUSE-S •• • • • •• •• •• •• • ••
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