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ABSTRACT with three endmembers [7, 8]. When applied to larger im-
) o _ages in an unsupervised manner with many endmembers, the
Nonlinear spectral mixing models have recently been receiVoptimization process becomes more challenging.
ing attention in hyperspectral image processing. This work ™, yhis work, we present a novel optimization method for
presents a novel optimization method for nonlinear unmixingy M and apply it to a real HS image with many end-
based on a generalized bilinear model (GBM), which coninempers. The effect of endmember extraction on nonlinear

siders second-order scattering effects. Semi-nonnegative Mgsnixing is investigated and the impact of the second-order
trix factorization is used for optimization to process a whole

; ) : ; ““scattering effects on abundance maps is visualized.
image in a matrix form. The proposed method is applied

to an airborne hyperspectral image with many endmembers

and shows good performance both in unmixing quality and 2. GBM UNMIXING VIA SEMI-NONNEGATIVE
computational cost with simple implementation. The effect MATRIX FACTORIZATION

of endmember extraction on nonlinear unmixing is investi-

gated and the impact of the nonlinearity on abundance mas1. Generalized bilinear model

is demonstrated. . .
The BMM takes account of second-order photon interactions

. Index Terms— hyperspectral image, nonlinear unmix- petween differenD endmembers as additional terms in the
ing, generalized bilinear model, semi-nonnegative matrix fact MM assuming that third or higher order interactions are neg-

torization ligible [4]. In the BMM, the observedl-spectrum of a single
pixely € REx1is given by:
1. INTRODUCTION b1 b
y=Ea+ > Y bijece+n, @)

Spectral unmixing is an important task for hyperspectral (HS)
image interpretation. Many researchers have worked on this
problem with a linear mixture model (LMM) that assumes,yhereE ¢ RL*P is the endmember matrix with theh col-

that an observed spectrum is a linear combination of severginn vectore; € RE*! representing theth endmember spec-
endmember spectra. The LMM is a simplified spectral mixtrym a ¢ RP*1 is the abundance vectdr, ; is the interac-

ture model that considers only first-order scattered photongsn apundance between thi andj th endmemberss is the

by neglecting multiple photon interactions. Although LMM Hadamard (element-wise product) operation, and RE*1
based unmixing methods can retrieve physically meaningfuk the additive noise. On the right side, the first term denotes
results, nonlinearity in spectral mixture model is pointed oUtne inear mixing and the second term represents the second-
by some works [1]-{4]. In recent years, nonlinear unmixingorder interaction, which is assumed to be a linear combina-
for HS images is receiving attention in remote sensing imaggon of bilinear endmember spectra, i.e., the bilinear mixing.
exploitation. Nonlinear spectral mixing occurs due to multi-prom g physical perspective, the GBM introduces the nonlin-

ple reflection and transmission from surface [2]. The bilineagay mixing coefficient; ; asb; ; = ¢; ja;a; and assumes the
mixture model (BMM), which considers second-order scatfojlowing constraints: - ’ o

tering of photons between two distinct materials, has been

studied by several groups [5]-[7]. The generalized bilinear D

model (GBM) introduces an effective means to deal withthe a; >0 Vie 1,...,D and Zai =1,
underlying assumptions in the BMM [7]. The GBM method i=1

was applied to small images of synthetic and real HS data ( < ci;<1Viel,..D—1Vjei+1,..,D.

i=1 j=i+1

)



When the endmembers are known, the GBM unmixing turngnput: Hyperspectral dat¥ € RE*? and endmember ma-
to the optimization of the abundanca) @nd the interaction trix E € REXD,
coefficient €) under the constraints of (2). Several optimiza-Output: Abundance matriA € RP** and interaction abun-

tion methods are proposed in [8]. dance matri8 ¢ RP(P—1)/2xP,
Step I A is initialized by the fully constrained least square
2.2. Semi-nonnegative matrix factorization for GBM (FCLS) method [10] based on the LMM.

. o Step 2 A" is calculated and is set asd x A® with small
In this work, the new optimization method based on semiyg|ye ofs.
nonnegative matrix .fa(?,tori.zation (Semi-NMF) is iqtroducgdStep 3 A andB are alternately updated by (8) and (9). If any
to speed up the optimization process of a whole image in @lement of8 exceeds that o&*, it is replaced by that of*.

matrix form. The observed HS image can be reshaped asgy satisfy the abundance sum-to-one constraint, the method
matrix formY € R**” with P representing the number of from [10] is adopted.

pixels. The BMM for the whole image is given in a matrix
form by

Y — EA + MB + N 3) 3. EXPERIMENT
whereA € RP*P jsthe abundance matrik] € REXP(P-1)/2 The GBM via Semi-NMF is applied to an airborne HS data
is the bilinear endmember matriB, € RP(P-1)/2xF jsthe  taken over vegetation because multiple scattering is a com-
interaction abundance matrix, ahl € RE*P is the noise mon phenomenon in vegetation areas [1]-[4]. The dataset
matrix. The GBM unmixing becomes the following mini- was acquired by a Compact Airborne Spectrographic Imager

mization with respect té andB: 3 (CASI-3) taken over pasture area in Hokkaido, Japan, on
o ) June 19, 2009. We selected a 3850 pixel size image with
minimize |Y — EA — MB /% (4) 68 spectral channels over 410-1070 nm and 1 m ground sam-

D pling distance (GSD). The data initially measured as radiance
subjectto A > 0, Z Air=1 0=<B=<A* (5) wereconverted into reflectance.
i=1 Vertex component analysis (VCA) [11], which is one of

the most common convex-geometry-based endmember ex-
: ) traction methods with the pure pixel assumption, is used for
|-l denotes the Frobenius orm. By introduci¥ig = ongmember extraction. The performance of the proposed
Y —MB andY; =Y — EA, (3) is written as follows method is numerically evaluated by the reconstruction error

Y, = EA 4N, ) (RE), the spectral angle mapper (SAM), and the computa-

tional time comparing with FCLS and the gradient descent
algorithm (GDA), which showed good results for the GBM
Separately minimizingY; — EA||2 and||Y > — MB||2 can be unmixing applied to a real HS image in [8]. RE and SAM are
an approximation of the solution of the original problem (4)Commonly used to evaluate the performance of the unmixing
performed by an alternating optimization algorithm. OWingprocedure for real d_ataset§. They are calculated using the
to physical constraints, all componentsBfM, A, andB  oPservedy;) and estimatedy,) spectra as follows:
are nonnegative. Therefore, the minimization of (4) can be P
so'Ived by Seml—NMF that f.actorlzes a non—rgstrlcted r?atrlx RE — RS Z 1V — Vell2, (10)
X into a non-restricted matrik and a nonnegative matrx LP—~
asX ~ FGT [9]. Semi-NMF optimization is guaranteed to
converge to a local optimum with the alternative update rules. 1 £ Vi Vi
With E given andM calculated fromE, the GBM unmixing SAM = 2 Zarccos() . (11)
k=1

is solved by the following update rules fArandB: Iy l15:]
By changing the number of endmembers extracted by VCA,

AT AT +/(YTE)*+AT(ETE)-)./(YTE)-+AT(ETE)*) (8)  we examined the second-order interaction term and the resid-
ual errors of the GBM. The impact of these values at a single
pixel is calculated by root-sum-square (RSS). After the end-
where.x and./ denote elementwise multiplication and divi- member extraction, the abundance maps and the impact of
sion. (C)+ and (C)* are the positive and negative parts of abilinear mixing on these abundance maps are estimated.
matrix C defined a* = (|C| + C)/2,C~ = (|C| — C)/2.

The GBM unmixing via Semi-NMF is as follows. 4. RESULTS AND DISCUSSION

whereAy; ;. = AixAjr (Vk € 1,..., P) and the operator

Y, =MB + N. (7)

BT +BT.x/(YIM)T+BT(MTM)—)./(YIM)—+BT(MTM)*) (9)

Algorithm : Generalized bilinear model based nonlinear un-Table 1 shows the comparison of the RE and SAM values,
mixing via Semi-NMF and the computational cost relative to different four numbers



Table 1. Comparison of REX10~3) and SAM (in degree) values, and computational costs (in sec).

D=6 D =11 D =16 D =21
RE SAM Time | RE SAM Time | RE SAM Time | RE SAM Time
FCLS 10.562 2.695 205 |6.320 1.824 57.4|5.025 1488 95.2 |4.738 1.433 1435
GDA 10.548 2.692 122.2 6.318 1.823 223.1 5.048 1.479 670.6| 4.721 1431 785.7
Semi-NMF | 10.264 2.640 55.4 | 6.258 1.816 106.6| 4.975 1.483 169.7| 4.701 1429 2504

of endmembers, i.eD = 6,11,16,21. The CPU used iS o e
Intel(R) Core(TM) i7 CPU 2.80 GHz, with a memory capac—g'@b
ity of 16 GB. The Semi-NMF method shows the best per ==&
formance in RE and SAM for many cases of the number o
endmembers. In addition, the computational time is smalleg
than GDA. Especially, even when the number of endmembers,,
becomes large, the Semi-NMF method converges to good I¢*
cal optima with reasonable computational cost owing to the
simple update rules in a matrix form. This result indicate
that Semi-NMF is a good candidate for the optimization o
the GBM unmixing regarding its convergence and easy im-

plementation. Fig. 1. RSS maps of second-order interaction terms (top) and

Fig. 1 shows the RSS maps of the second-order interadl"Mixing residual errors (bottom).
tion term and the unmixing residual errors. As the number
of endmembers increases (6, 11, 16, and 21), the two maps
converge. We concluded 16 is enough for the number of end-
members. In spite of the large number of endmembers, the 5. CONCLUSION
bilinear mixing effect clearly appears in areas B and C in Fig.

1, i.e., the boundary between grass and tree, and the narromhis work presented a novel optimization method based on
path. WithD = 6, area A in Fig. 1 corresponding to grass semi-NMF for the GBM unmixing and demonstrated its ap-
shows the high bilinear effect but the residual error still repjication to an airborne real HS image taken over a vegeta-
mains h|gh in this area. It Signiﬁcantly decreases after thgon scene with many endmembers. Semi-NMF enables the
grass is detected as the endmember With= 11. It means  optimization of the GBM unmixing for processing a whole
the endmember extraction has larger influence on the re&du@,ﬁage in a matrix form, with simple update rules. The pro-
errors of unmixing than the bilinear mixing effect. Therefore,posed method showed useful results both in unmixing quality
to discuss the nonlinear mixing, the accurate endmember e¥nd computational cost. By examining the effect of endmem-

traction is the major premise. ber extraction on nonlinear unmixing, the residual errors of
Since VCA is sensitive to the outlier, it detects some engdNMIXing are more influenced by the endmember extraction

members that are only present in very specific regions. T§'2n the bilinear spectral mixing effect. The impact of the
visualize the abundance map and the bilinear mixing eﬁecls,,econd—'order scattering effects on abundance maps 1S visual-
we manually eliminated such kind of specific endmemberi€d. With accurate endmember extraction, Semi-NMF based

and re-processed the GBM unmixing with 10 endmemberg;B'vI has a possibility to deal with spectrally complex HS
as shown in Fig. 2 (a). In Fig. 2 (b), the colored circles'Mages, thereby contributing to the practical use of nonlinear

indicate the locations of these endmembers, with each coldf"M*IN9-:
corresponding to that of spectrum in Fig. 2 (a). The endmem-

bers are labeled by visual judgment considering the locations

of endmembers and comparing the abundance maps and the

RGB color image. Fig. 2 (c) and (d) show the abundance

maps for these ten materials and their differences with the

LMM, which demonstrate the impacts of the second-order inThe authors would like to thank Prof. J. Tourneret for provid-
teraction on the abundance maps. In some regions, the abting the GDA code. This project is partly carried out under the
dance fractions changed more th2fi from the LMM be-  contracted with AIST (National Institute of Advanced Indus-
cause of the multiple scattering effect. trial Science and Technology).
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Fig. 2. (a) Endmember spectra, (b) location of endmembers, (c) abundance maps, and (d) differences of abundance maps with
LMM.
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