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ABSTRACT

Nonlinear spectral mixing models have recently been receiv-
ing attention in hyperspectral image processing. This work
presents a novel optimization method for nonlinear unmixing
based on a generalized bilinear model (GBM), which con-
siders second-order scattering effects. Semi-nonnegative ma-
trix factorization is used for optimization to process a whole
image in a matrix form. The proposed method is applied
to an airborne hyperspectral image with many endmembers
and shows good performance both in unmixing quality and
computational cost with simple implementation. The effect
of endmember extraction on nonlinear unmixing is investi-
gated and the impact of the nonlinearity on abundance maps
is demonstrated.

Index Terms— hyperspectral image, nonlinear unmix-
ing, generalized bilinear model, semi-nonnegative matrix fac-
torization

1. INTRODUCTION

Spectral unmixing is an important task for hyperspectral (HS)
image interpretation. Many researchers have worked on this
problem with a linear mixture model (LMM) that assumes
that an observed spectrum is a linear combination of several
endmember spectra. The LMM is a simplified spectral mix-
ture model that considers only first-order scattered photons
by neglecting multiple photon interactions. Although LMM
based unmixing methods can retrieve physically meaningful
results, nonlinearity in spectral mixture model is pointed out
by some works [1]-[4]. In recent years, nonlinear unmixing
for HS images is receiving attention in remote sensing image
exploitation. Nonlinear spectral mixing occurs due to multi-
ple reflection and transmission from surface [2]. The bilinear
mixture model (BMM), which considers second-order scat-
tering of photons between two distinct materials, has been
studied by several groups [5]-[7]. The generalized bilinear
model (GBM) introduces an effective means to deal with the
underlying assumptions in the BMM [7]. The GBM method
was applied to small images of synthetic and real HS data

with three endmembers [7, 8]. When applied to larger im-
ages in an unsupervised manner with many endmembers, the
optimization process becomes more challenging.

In this work, we present a novel optimization method for
the GBM and apply it to a real HS image with many end-
members. The effect of endmember extraction on nonlinear
unmixing is investigated and the impact of the second-order
scattering effects on abundance maps is visualized.

2. GBM UNMIXING VIA SEMI-NONNEGATIVE
MATRIX FACTORIZATION

2.1. Generalized bilinear model

The BMM takes account of second-order photon interactions
between differentD endmembers as additional terms in the
LMM assuming that third or higher order interactions are neg-
ligible [4]. In the BMM, the observedL-spectrum of a single
pixel y ∈ RL×1 is given by:

y = Ea+

D−1∑
i=1

D∑
j=i+1

bi,jei ⊙ ej + n, (1)

whereE ∈ RL×D is the endmember matrix with thei th col-
umn vectorei ∈ RL×1 representing thei th endmember spec-
trum, a ∈ RD×1 is the abundance vector,bi,j is the interac-
tion abundance between thei th andj th endmembers,⊙ is the
Hadamard (element-wise product) operation, andn ∈ RL×1

is the additive noise. On the right side, the first term denotes
the linear mixing and the second term represents the second-
order interaction, which is assumed to be a linear combina-
tion of bilinear endmember spectra, i.e., the bilinear mixing.
From a physical perspective, the GBM introduces the nonlin-
ear mixing coefficientci,j asbi,j = ci,jaiaj and assumes the
following constraints:

ai ≥ 0 ∀i ∈ 1, ..., D and
D∑
i=1

ai = 1,

0 ≤ ci,j ≤ 1 ∀i ∈ 1, ..., D − 1 ∀j ∈ i+ 1, ..., D.

(2)



When the endmembers are known, the GBM unmixing turns
to the optimization of the abundance (a) and the interaction
coefficient (c) under the constraints of (2). Several optimiza-
tion methods are proposed in [8].

2.2. Semi-nonnegative matrix factorization for GBM

In this work, the new optimization method based on semi-
nonnegative matrix factorization (Semi-NMF) is introduced
to speed up the optimization process of a whole image in a
matrix form. The observed HS image can be reshaped as a
matrix form Y ∈ RL×P with P representing the number of
pixels. The BMM for the whole image is given in a matrix
form by

Y = EA + MB + N (3)

whereA ∈ RD×P is the abundance matrix,M ∈ RL×D(D−1)/2

is the bilinear endmember matrix,B ∈ RD(D−1)/2×P is the
interaction abundance matrix, andN ∈ RL×P is the noise
matrix. The GBM unmixing becomes the following mini-
mization with respect toA andB:

minimize ∥Y − EA − MB∥2F (4)

subject to A ⪰ 0,

D∑
i=1

Ai,k = 1, 0 ⪯ B ⪯ A∗ (5)

whereA∗(i,j),k = Ai,kAj,k (∀k ∈ 1, ..., P ) and the operator
∥ · ∥F denotes the Frobenius norm. By introducingY1 =
Y − MB andY2 = Y − EA, (3) is written as follows

Y1 = EA + N, (6)

Y2 = MB + N. (7)

Separately minimizing∥Y1−EA∥2F and∥Y2−MB∥2F can be
an approximation of the solution of the original problem (4)
performed by an alternating optimization algorithm. Owing
to physical constraints, all components ofE, M , A, andB
are nonnegative. Therefore, the minimization of (4) can be
solved by Semi-NMF that factorizes a non-restricted matrix
X into a non-restricted matrixF and a nonnegative matrixGT

asX ≈ FGT [9]. Semi-NMF optimization is guaranteed to
converge to a local optimum with the alternative update rules.
With E given andM calculated fromE, the GBM unmixing
is solved by the following update rules forA andB:

AT←AT .∗
√

((YT
1 E)++AT (ET E)−)./((YT

1 E)−+AT (ET E)+) (8)

BT←BT .∗
√

((YT
2 M)++BT (MT M)−)./((YT

2 M)−+BT (MT M)+) (9)

where.∗ and./ denote elementwise multiplication and divi-
sion. (C)+ and(C)− are the positive and negative parts of a
matrix C defined asC+ = (|C|+ C)/2, C− = (|C| − C)/2.
The GBM unmixing via Semi-NMF is as follows.

Algorithm : Generalized bilinear model based nonlinear un-
mixing via Semi-NMF

Input : Hyperspectral dataY ∈ RL×P and endmember ma-
trix E ∈ RL×D.
Output : Abundance matrixA ∈ RD×P and interaction abun-
dance matrixB ∈ RD(D−1)/2×P .
Step 1: A is initialized by the fully constrained least square
(FCLS) method [10] based on the LMM.
Step 2: A∗ is calculated andB is set asδ × A∗ with small
value ofδ.
Step 3: A andB are alternately updated by (8) and (9). If any
element ofB exceeds that ofA∗, it is replaced by that ofA∗.
To satisfy the abundance sum-to-one constraint, the method
from [10] is adopted.

3. EXPERIMENT

The GBM via Semi-NMF is applied to an airborne HS data
taken over vegetation because multiple scattering is a com-
mon phenomenon in vegetation areas [1]-[4]. The dataset
was acquired by a Compact Airborne Spectrographic Imager
3 (CASI-3) taken over pasture area in Hokkaido, Japan, on
June 19, 2009. We selected a 150×150 pixel size image with
68 spectral channels over 410-1070 nm and 1 m ground sam-
pling distance (GSD). The data initially measured as radiance
were converted into reflectance.

Vertex component analysis (VCA) [11], which is one of
the most common convex-geometry-based endmember ex-
traction methods with the pure pixel assumption, is used for
endmember extraction. The performance of the proposed
method is numerically evaluated by the reconstruction error
(RE), the spectral angle mapper (SAM), and the computa-
tional time comparing with FCLS and the gradient descent
algorithm (GDA), which showed good results for the GBM
unmixing applied to a real HS image in [8]. RE and SAM are
commonly used to evaluate the performance of the unmixing
procedure for real datasets. They are calculated using the
observed (yk) and estimated (̂yk) spectra as follows:

RE=

√√√√ 1

LP

P∑
k=1

∥ŷk − yk∥2, (10)

SAM =
1

P

P∑
k=1

arccos

(
yk · ŷk

∥yk∥∥ŷk∥

)
. (11)

By changing the number of endmembers extracted by VCA,
we examined the second-order interaction term and the resid-
ual errors of the GBM. The impact of these values at a single
pixel is calculated by root-sum-square (RSS). After the end-
member extraction, the abundance maps and the impact of
bilinear mixing on these abundance maps are estimated.

4. RESULTS AND DISCUSSION

Table 1 shows the comparison of the RE and SAM values,
and the computational cost relative to different four numbers



Table 1. Comparison of RE (×10−3) and SAM (in degree) values, and computational costs (in sec).

D = 6 D = 11 D = 16 D = 21
RE SAM Time RE SAM Time RE SAM Time RE SAM Time

FCLS 10.562 2.695 20.5 6.320 1.824 57.4 5.025 1.488 95.2 4.738 1.433 143.5
GDA 10.548 2.692 122.2 6.318 1.823 223.1 5.048 1.479 670.6 4.721 1.431 785.7

Semi-NMF 10.264 2.640 55.4 6.258 1.816 106.6 4.975 1.483 169.7 4.701 1.429 250.4

of endmembers, i.e.,D = 6, 11, 16, 21. The CPU used is
Intel(R) Core(TM) i7 CPU 2.80 GHz, with a memory capac-
ity of 16 GB. The Semi-NMF method shows the best per-
formance in RE and SAM for many cases of the number of
endmembers. In addition, the computational time is smaller
than GDA. Especially, even when the number of endmembers
becomes large, the Semi-NMF method converges to good lo-
cal optima with reasonable computational cost owing to the
simple update rules in a matrix form. This result indicates
that Semi-NMF is a good candidate for the optimization of
the GBM unmixing regarding its convergence and easy im-
plementation.

Fig. 1 shows the RSS maps of the second-order interac-
tion term and the unmixing residual errors. As the number
of endmembers increases (6, 11, 16, and 21), the two maps
converge. We concluded 16 is enough for the number of end-
members. In spite of the large number of endmembers, the
bilinear mixing effect clearly appears in areas B and C in Fig.
1, i.e., the boundary between grass and tree, and the narrow
path. WithD = 6, area A in Fig. 1 corresponding to grass
shows the high bilinear effect but the residual error still re-
mains high in this area. It significantly decreases after the
grass is detected as the endmember withD = 11. It means
the endmember extraction has larger influence on the residual
errors of unmixing than the bilinear mixing effect. Therefore,
to discuss the nonlinear mixing, the accurate endmember ex-
traction is the major premise.

Since VCA is sensitive to the outlier, it detects some end-
members that are only present in very specific regions. To
visualize the abundance map and the bilinear mixing effect,
we manually eliminated such kind of specific endmembers
and re-processed the GBM unmixing with 10 endmembers
as shown in Fig. 2 (a). In Fig. 2 (b), the colored circles
indicate the locations of these endmembers, with each color
corresponding to that of spectrum in Fig. 2 (a). The endmem-
bers are labeled by visual judgment considering the locations
of endmembers and comparing the abundance maps and the
RGB color image. Fig. 2 (c) and (d) show the abundance
maps for these ten materials and their differences with the
LMM, which demonstrate the impacts of the second-order in-
teraction on the abundance maps. In some regions, the abun-
dance fractions changed more than2% from the LMM be-
cause of the multiple scattering effect.
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Fig. 1. RSS maps of second-order interaction terms (top) and
unmixing residual errors (bottom).

5. CONCLUSION

This work presented a novel optimization method based on
Semi-NMF for the GBM unmixing and demonstrated its ap-
plication to an airborne real HS image taken over a vegeta-
tion scene with many endmembers. Semi-NMF enables the
optimization of the GBM unmixing for processing a whole
image in a matrix form, with simple update rules. The pro-
posed method showed useful results both in unmixing quality
and computational cost. By examining the effect of endmem-
ber extraction on nonlinear unmixing, the residual errors of
unmixing are more influenced by the endmember extraction
than the bilinear spectral mixing effect. The impact of the
second-order scattering effects on abundance maps is visual-
ized. With accurate endmember extraction, Semi-NMF based
GBM has a possibility to deal with spectrally complex HS
images, thereby contributing to the practical use of nonlinear
unmixing.
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Fig. 2. (a) Endmember spectra, (b) location of endmembers, (c) abundance maps, and (d) differences of abundance maps with
LMM.
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