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ABSTRACT

This paper presents an airborne experiment on unmixing-
based hyperspectral super-resolution using RGB imagery.
Preprocessing is described to ensure spatial and spectral
consistency between hyperspectral and RGB images. An
extended version of coupled nonnegative matrix factoriza-
tion (CNMF) is introduced for multisensor hyperspectral
super-resolution to deal with a challenging problem set-
ting, i.e., only three spectral channels for higher spatial
information and a 10-fold difference of ground sampling
distance. The proposed method successfully estimated the
high-spatial-resolution red-edge image. Numerical evalua-
tion by comparing the high-spatial-resolution hyperspectral
image to ground-measured spectra demonstrated recovery of
pure-pixel spectra by the proposed method.

Index Terms— Hyperspectral super-resolution, data fu-
sion, unmixing, coupled nonnegative matrix factorization
(CNMF)

1. INTRODUCTION

Hyperspectral (HS) imagers generally have a larger ground
sampling distance (GSD) than multispectral (MS) imagers
owing to a trade-off between spatial and spectral resolutions
and the signal-to-noise ratio. HS and MS data fusion enables
the super-resolution of HS data [1, 2, 3, 4]. A Bayesian ap-
proach was first proposed for HS super-resolution using MS
data [1, 2]. Unmixing-based HS and MS data fusion can
enhance the spatial resolution of HS data with little spec-
tral distortion [3, 4]. An unmixing-based HS and MS data
fusion method, named coupled nonnegative matrix factoriza-
tion (CNMF), is composed of alternating unmixing for two
images using nonnegative matrix factorization (NMF) [5],
which has recently been receiving attention for the unmixing
of HS data based on a linear spectral mixture model (LSMM)
to deal with severe mixtures considering nonnegativity [6, 7].
A similar approach for the super-resolution of HS data using
an RGB image, which is a special case of HS and MS data
fusion, was independently proposed in the field of computer
vision [4].

HS and MS data fusion algorithms in remote sensing have
mainly been evaluated using synthetic datasets or real datasets

taken from different platforms because there has been no plat-
form that is composed of HS and MS imagers with the trade-
off between spatial and spectral resolutions. In this paper, we
present an airborne experiment on unmixing-based HS super-
resolution fusing with a higher-spatial-resolution RGB image
taken from the same platform. To the best of our knowledge,
this work is the first attempt to demonstrate the experiment of
multisensor unmixing-based HS super-resolution using real
remote sensing datasets taken from the same platform. We
describe the preprocessing that ensures spatial and spectral
consistency between two images, which is a practical issue of
multisensor super-resolution. An extended version of CNMF
is introduced to deal with a challenging problem setting: only
three spectral channels for MS data and a 10-fold GSD differ-
ence. The reconstruction of pure-pixel spectra is numerically
validated by comparison to ground-measured spectra.

2. METHODOLOGY

2.1. Flow of Preprocessing

Spatial and spectral consistency between HS and RGB images
is important to generate high-spatial-resolution HS data with
accurate spectra. To ensure these consistency between HS and
RGB images, we adopt the following preprocessing.

1. Smile and keystone, which are distortions of spectrum
images in the spectral and spatial domains, respectively,
are modified using an image-matching technique [8].

2. Geometric projection is applied to two datasets using
positions and orientations of the aircraft.

3. The HS image is registered to the RGB image to mit-
igate geometric errors. The relative spatial response
function can be approximated by a Gaussian filter.

4. The HS image is converted to a reflectance image using
ground-measured spectra of a reference area.

5. The estimation of relative spectral response functions
(SRFs) can be formulated as a constrained least-squares
problem [9, 10]. Reflectance conversion coefficients of
the RGB image are simultaneously obtained.
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Fig. 1. Illustration of unmixing-based HS and MS data fusion.

6. The RGB image is converted to a reflectance image us-
ing the coefficients.

2.2. Unmixing-Based HS and MS Data Fusion

HS and MS data can be represented in matrix form as X ∈
RLh×Ph and Y ∈ RLm×Pm , respectively. Lh and Lm de-
note the numbers of spectral bands, and Ph and Pm denote
the numbers of pixels. Lh > Lm and Ph < Pm are satis-
fied owing to the trade-off between spectral and spatial res-
olutions. The high-spatial-resolution HS data is denoted as
Z ∈ RLh×Pm . The spectrum at each pixel is assumed to be a
linear combination of several endmember spectra. Therefore,
Z is formulated as

Z = EA+N, (1)

where E ∈ RLh×M is the endmember matrix, A ∈ RM×Pm

is the abundance matrix, and N ∈ RLh×Pm is the residual.
Unmixing-based HS and MS data fusion yields estimates

of E and A from observable X and Y to reconstruct Z, as
illustrated in Fig. 1. The low-spatial-resolution HS data and
MS data can be seen as degraded versions of the high-spatial-
resolution HS data in the spatial and spectral domains, respec-
tively. Therefore, X and Y are modeled as

X = ZS, Y = RZ. (2)

Here, S ∈ RPm×Ph is the relative spatial response transform
matrix and R ∈ RLm×Lh is the spectral response transform
matrix, which are obtained in the 3rd and 5th preprocessing
steps, respectively. By substituting (1) into (2), X and Y can
be approximated as two LSMMs:

X ≈ E(AS), Y ≈ (RE)A. (3)

E and A can be obtained by alternating unmixing of X and
Y under the constraints of the relative sensor characteristics
(R and S). Here, we define Ah = AS and Em = RE as de-
graded versions of A and E, respectively. Spatial and spectral
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Fig. 2. Illustration of Improved initialization of high-spatial-
resolution abundance map.

consistency, which is expressed as RX = YS from (3), is im-
portant in practical use and is satisfied by the preprocessing.

Since NMF has been shown to be effective for spectral un-
mixing satisfying physical constraints without assuming the
presence of pure pixels, CNMF uses NMF to solve the two
unmixing problems and couples them under the sensor char-
acteristics. CNMF starts with NMF-based unmixing of the
HS data to estimate the endmember (E) and abundance (Ah)
matrices using its spectral advantage. NMF converges to local
minima; therefore, the initialization is important. The vertex
component analysis (VCA) [11] and fully constrained least-
squares (FCLS) [12] methods are used for the initialization of
E and Ah, respectively. Next, the MS image is unmixed by
NMF after initializing the endmember (Em) and abundance
(A) matrices using E and Ah. The relative SRFs (R) are
used for initializing Em. The sequential unmixing for HS data
is processed after initializing the abundance by Ah = AS.
After that, two datasets are alternately unmixed until conver-
gence and the fused data is obtained by multiplying the end-
member matrix by the high-spatial-resolution abundance ma-
trix.

2.3. Extended CNMF

When the difference of GSDs is large and the RGB image is
used for the MS data, the unmixing of the RGB image results
in a severely ill-posed problem. To tackle this challenging
problem, we propose an extended CNMF (ECNMF) that im-
proves the initialization of the abundance matrix (A).

In the ordinary CNMF, A is initialized as interpolated
abundance maps calculated from Ah, which may not be suit-
able for a large GSD difference. In this work, we introduce
segmentation for better initialization of A, as shown in Fig. 2.
First, the low-spatial-resolution abundance maps (Ah) are up-
scaled using image interpolation. Next, the interpolated abun-
dance maps are converted to segmented abundance maps by
integrating region-unifying segmentation of the RGB image
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Fig. 3. 719-nm-band images of (a) HS and (b) fused data and (c) NDVI image using 719 and 691 nm images.

with the interpolated abundance maps. The average abun-
dance value of a segment is assigned to all pixels in the seg-
ment. Finally, a Gaussian-blurred version of segmented abun-
dances is used for initializing A. The modified abundance
fraction at the jth pixel in the ith band (Â)i,j is given by

(Â)i,j = K
Pm∑

j∗=1

exp

(
−g(j, j∗)2

2c2

)
1

|ϕj |
∑

j′∈ϕj

(A)i,j′ (4)

where K = 1/
(∑Pm

j∗=1 exp
(
− g(j,j∗)2

2c2

))
, ϕj is the segment

where the jth pixel belongs to, g(j, j∗) is the Euclidean dis-
tance between the jth and j∗th pixels, and c is a Gaussian
parameter. In addition, we update only A in the RGB unmix-
ing to avoid the incorrect convergence of Em owing to the
small number of spectral bands.

3. AIRBORNE EXPERIMENT

3.1. Image Acquisition

Airborne observation was conducted using HS and RGB
cameras mounted on a small aircraft. The HS camera is
a HyperSpec-VNIR-C (Headwall Photonics Inc.), which
captures 128 bands in the 390–1040 nm spectral range by
pushbroom imaging. The 400–800 nm spectral region was
used because the remaining wavelength ranges have low ac-
curacy of reflectance conversion. The RGB camera is an EOS
5D Mark II (Canon Inc.). A mosaic RGB image, in which
subimages close to the nadir and taken by continuous shoot-
ing are merged, is used for fusion with HS data. The altitude
was approximately 1000 m and the GSDs of the HS and
RGB images are 2.5 and 0.25 m, respectively, after geometric
projection. The dataset was acquired over the University of
Tokyo campus and the neighboring urban area.

3.2. Experimental Results

We produced the 0.25-m-GSD HS data with 97 bands over the
400–800 nm spectral region by applying the ECNMF method
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Fig. 4. Spectral comparison between fused data and low-
spatial-resolution HS data as well as ground measured spectra
for (left) green plastic sheet and (right) concrete shown in Fig.
3(b).

to the HS and RGB images. Figs. 3 (a)(b) show 719-nm-band
images of low-spatial-resolution HS and fused data, respec-
tively. As shown in the enlarged images, a tree crown, a green
plastic sheet spread on a roof and a concrete line are identifi-
able with the fused data owing to the 10-fold improvement of
GSD.

To evaluate the validity of the red-edge (719 nm) image
of the fused data, we examine the normalized difference veg-
etation index (NDVI) map. Fig. 3(c) shows the NDVI map
using 719 and 691 nm images. Vegetation areas show high
values, whereas the green plastic sheets, which have small
spectral angles compared with vegetation in the RGB image,
show low values. The unobservable high-spatial-resolution
red-edge image could be obtained by the unmixing-based fu-
sion of spectral information of the HS data and spatial infor-
mation of the RGB image. However, note that nonvegetation
materials around vegetation are bright. It may be because
the optimization of two alternating unmixings converged to
local optima owing to the initial errors of the high-spatial-
resolution abundance maps. Once abundances at one pixel
in the RGB image are initialized to include vegetation, the
NMF-based update of abundances cannot remove this effect
because there is no near-infrared information that enables dis-
crimination between vegetation and nonvegetation.

Fig. 4 shows the spectra of two objects, i.e., the green



SAE (degree) RMSE
HS CNMF ECNMF HS CNMF ECNMF

Green plastic sheet 8.89 14.3 11.2 0.0759 0.0386 0.0275
Concrete 50.4 42.0 27.9 0.184 0.0769 0.0748

Table 1. Numerical evaluation of spectral reconstruction for three objects, i.e., green plastic sheet, compressor unit, and
concrete.

plastic sheet and the concrete, for low-spatial-resolution HS
and for CNMF and ECNMF fused data as well as the ground-
measured spectra. The spectra of the two objects are extracted
from the corresponding locations as shown in the enlarged
rectangle image in Fig. 3(b). Table 1 shows the root mean
squared errors (RMSEs) and spectral angle errors (SAEs) of
two spectra for CNMF and ECNMF data using the ground-
measured spectra as the reference data. The spectra of the
low-spatial-resolution HS data appears to be degraded from
the ground-measured spectra because of the mixed pixels. In
contrast, the CNMF and ECNMF data recover the spectral
signatures showing smaller RMSEs compared to the low-
spatial-resolution HS data. ECNMF shows the best or second
performance for all criteria. The deference between CNMF
and ECNMF can be seen in Fig. 4. Although CNMF contains
spectral artifacts caused by initialization errors of the high-
resolution abundances, ECNMF successfully recover the
spectral signatures more similar to the ground measurements,
which proves the effectiveness of the ECNMF method.

4. CONCLUSION

We demonstrated an airborne experiment on unmixing-based
HS super-resolution using an RGB image. The preprocess-
ing is described to ensure spatial and spectral consistency
between two images, which is an important condition of
multisensor super-resolution. We introduced segmentation
to the initialization of higher-spatial-resolution abundance
maps in CNMF to deal with a severely ill-posed problem
due to the 10-fold GSD difference and the lack of higher-
spatial-resolution near-infrared images in the MS data. The
high-spatial-resolution red-edge image could be obtained by
unmixing-based HS super-resolution. The fused data were
numerically evaluated using the ground-measured spectra,
and we confirmed that the proposed method can recover
pure-pixel spectra that are degraded because of mixed pixels
in the low-spatial-resolution HS data.
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