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ABSTRACT

In this paper, we propose a new object localization method
named sparse representation based object localization (SROL),
which is based on the generalized Hough-transform-based ap-
proach using sparse representations for parts detection. The
proposed method was applied to car and ship detection in
remote sensing images and its performance was compared
to those of state-of-the-art methods. Experimental results
showed that the SROL algorithm can accurately localize cat-
egorical objects or a specific object using a small size of
training data.

Index Terms— Sparse representation, object localiza-
tion, generalized Hough transform

1. INTRODUCTION

The spatial resolution of optical remote sensing imagers has
been improving particularly in the last decade, e.g., GeoEye,
WorldView, and Pleiades series. Skysat series firstly launched
on November 2013 enable the acquisition of movies with a
1-m ground sampling distance (GSD) from space. These ad-
vances in sensor technologies allow advanced image under-
standing and interpretation, such as object detection and lo-
calization. Fully automated object localization is required to
analyze big data of high-spatial-resolution imagery.

Object detection has been actively studies in the field of
computer vision. A joint use of local-feature extraction and
classification based on machine learning algorithms is an ef-
fective approach for object detection. Various feature extrac-
tion methods, such as Haar-like feature, the scale invariant
feature transform (SIFT), and histograms of oriented gradi-
ent (HOG), have been used for many tasks of object detection
[1, 2, 3]. Support vector machine (SVM) and AdaBoost are
well-known classifiers used for object recognition [1, 4].

An approach that uses the presence of parts for the ob-
ject class and their structural relations has been getting at-
tention for object detection. Agarwal and Roth proposed an
approach for learning a sparse, part-based representation for
object detection and showed its robustness to partial occlusion
and background variation [5]. The Hough-transform-based
method proposed by Leibe et al. learns the class-specific im-
plicit shape model (ISM), which detect local appearances of

categorical objects according to a codebook and localize ob-
jects considering their co-occurrence consistency by the gen-
eralized Hough transform [6]. Gall and Lempitsky proposed
a class-specific Hough forest algorithm, which uses a random
forest to discriminatively detect object parts and directly cast
probabilistic votes about possible centers of the object to gen-
erate a Hough image [7].

Object detection of high-resolution remote sensing im-
ages has different characteristics compared to ground-shot
images: objects are generally small relative to a GSD with
cluttered backgrounds; rotation invariance is required, whereas
scale invariance is not strongly required owing to the a fixed
GSD for each imaging sensor and appearance changes are
relatively small owing to limited pointing angles. Many re-
searchers have worked on detection of specific object class
in remote sensing imagery, such as car, ship, and airplane
detection; however, many of them are adhoc and limited to
specific uses. Lei et al. proposed an extended method of the
Hough forest for object detection of remote sensing images
[8]. The major improvement is to achieve rotation invariance
by firstly detecting dominant gradient orientations and align
local image patches.

The theory of sparse representation and compressed sens-
ing has been getting attention in the areas of signal process-
ing, computer vision and pattern recognition [9]. Sparse rep-
resentations enable finding essential image patterns and have
been used for a wide range of image processing applications
[10]. In this paper, we present a new method, named sparse
representation based object localization (SROL), to detect and
localize categorical objects or specific objects in remote sens-
ing imagery. Our approach uses sparse representations as
local-feature detection of the generalized Hough-transform-
based object localization. Parts of the object are detected
by sparse representations of patches in an input image using
pre-learned target and background dictionaries and the loca-
tions of the objects are determined by considering their struc-
tural relations using the generalized Hough voting. We adopt
sparse representations for local-feature detection to deal with
cluttered backgrounds, occlusion, and appearance changes of
objects and to achieve a good performance with a small size
of training data. Our experiments are performed on car and
ship detection to demonstrate the effectiveness of the pro-
posed method.
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Fig. 1. Outline of object localization based on sparse repre-
sentation.

2. METHODOLOGY

Fig. 1 illustrates the outline of our proposed method. The
SROL algorithm is composed of four steps: i) sliding window
search to extract patch images in a test image; ii) parts detec-
tion via sparse representations of patch images; iii) Hough
voting using offsets of detected parts of the target object; iv)
finding local maxima in the Hough image.

2.1. Dictionary Construction

The fist task of any local-feature based approach is to detect
object parts in a given image. Sparse representations can be
used for this purpose. Any patch image is assumed to be rep-
resented as a sparse linear combination of atoms. A patch
image y ∈ RP is formulated as

y ≈ Dx, (1)

where D ∈ RP×N denotes the dictionary with each column
vector representing an atom, x ∈ RN is the sparse coefficient
vector, P is the number of pixels in the patch image, and N is
the number of atoms. In the sparse representation, the number
of nonzero values of x is assumed to be much smaller than P ,
i.e., ∥x∥0 ≪ P . Therefore, x is obtained by the following
optimization

min
x

∥x∥0 s.t.∥y −Dx∥22 ≤ ϵ (2)

This optimization is known as an NP-hard problem; however,
several techniques have been studied to approximately solve
it, such as matching pursuit (MP) and its extensions [11, 12].
In the case of ∥x∥0 = 1, the MP-based sparse representa-
tion acts as image matching using an Euclidean distance for
similarity measurement.

When atoms of the dictionary have class labels, i.e., tar-
get or background, sparse representations can be used for
object part detection. We prepare the dictionary D as the
horizontally stacked matrix [Dt Db], where Dt ∈ RP×Nt

is the target dictionary with the column vectors represent-
ing various parts images of the target and Db ∈ RP×Nb is
the background dictionary with the column vectors represent-
ing atoms of the background. Nt and Nb are the numbers
of atoms for the target and background dictionaries, respec-
tively, and then N = Nt + Nb. Fig. 2 illustrates the binary
class-labeled sparse representation of a patch for object part
detection. Positive coefficients of the target-dictionary atoms,
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Fig. 2. Binary class labeled sparse representation of patch.

xk > 0 (k ≤ Nt), suggest the existence of the object parts.
The first step of our approach aims to construct a structured
dictionary.

Learning a dictionary directly from training data usually
leads to better representation than using a predetermined dic-
tionary. We adopt the K-SVD algorithm to build a reconstruc-
tive and compact background dictionary [13]. A large number
of patch images that do not include the target objects are ran-
domly sampled and K-SVD is applied to them to learn the
background dictionary, which can reconstruct various patch
patterns including cluttered backgrounds. In our implemen-
tation, we construct the background dictionary depending on
the GSD of test images because patch patterns are conditional
to the GSD.

Random sampling and atom selection are used to con-
struct the target dictionary. We keep raw image patches be-
cause each atom of the target dictionary needs to have the off-
set of the patch relative to the center of the object for Hough
voting. To achieve rotation-invariant object localization, we
augment the training samples with rotated copies of the orig-
inal images and obtain an initial redundant target dictionary
by random sampling. Next, the number of atoms in the re-
dundant dictionary is reduced by removing samples that have
very similar other samples. The zero-mean normalized cross-
correlation (ZNCC) is used to measure the similarities be-
tween all samples. The offset (δik, δjk) of the patch center
from the target center need to be linked to the patch image,
i.e., the kth atom in Dt (k = 1, ..., Nt). When the target have
sufficient spatial features, it is possible to estimate its orien-
tation. In this case, the orientation of the target (θk) is also
linked to the patch image.

2.2. Object Localization with Sparse Representation
Based Hough Voting

Sliding-window search for all patches of the test image is
time-consuming. Interest point detectors have widely been
used for the Hough-transform-based object detection; how-
ever, small sizes of objects in remote sensing images require
lower level feature detector for sliding-window search. We
use edges obtained by a Sobel operation for sliding-window
search. In this case, the generation of the target dictionary can
be effectively processed by sampling patches along edges to
make consistency between patch images of the dictionary and
test images.
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Fig. 3. Car detection results and precision-recall curves for
two test images.

Sparse representations are used to judge whether a patch
image contains a part of the target or not dealing with changes
of background and appearance of the target. For a patch with
its center locating at (i, j) of the test image, a sparse represen-
tation x is derived solving (2) by MP. When xk > 0 (k ≤ Nt),
it suggests that the target may be located at (i+ δik, j+ δjk).
Higher value of xk indicates higher correlation between the
given patch and the part of the target dk, and thus higher prob-
ability of the existence of the target. Therefore, we cast the
vote of the value xk to the location (i + δik, j + δjk), which
is the generalised Hough transform. The Hough image can be
obtained as a result of iterations of this process for all patches,
which represents the existence probability of the target.

The target objects can be simply localized by returning
the set of the local-maxima locations in the Gaussian-filtered
Hough image. A Gaussian blur filter with its full width at half
maximum setting to the size of the smaller side of the target
object is useful to smooth the Hough image for effectively
finding its local maxima.

3. EXPERIMENTAL RESULTS

3.1. Car Detection

First, we demonstrate an experiment of car detection using
airborne images. The RGB images were taken over urban ar-
eas of Tokyo Japan from approximately 1000 m altitude with
the 0.2 m GSD on 11 August 2013. The images were con-
verted to Lab color space and the lightness channel was used
for processing. 36 training samples were used for this exper-

iment. Detection results are considered as “true” when their
Euclidean location errors from the ground truth are less than
the average size of the objects. The patch is 13×13 pixel
size. The proposed method is compared to the state-of-the-art
methods, i.e., the joint use of HOG and SVM (HOG-SVM)
and the rotation-invariant Hough forest [8]. We use the same
window search and patch size for the Hough forest for a fair
comparison. The patch size of HOG-SVM is set to 40×40
pixel size to include a whole object. The precision-recall
curve is used to quantitatively evaluate their detection per-
formances. Fig. 3 shows the car detection results of SROL
and the comparison of precision-recall curves for two test im-
ages. As shown in Figs. 3(c)(d), SROL outperforms HOG-
SVM and Hough forest for both images. One of the reasons
for the low performance of HOG-SVM may be the small size
of training data. Generally speaking, machine-learning-bade
classifiers (e.g. SVM) require a large size of training data
containing various appearances of the object class. The patch
size of HOG-SVM is larger than those of SROL and Hough
forest and thus requires more training samples to learn various
effects of backgrounds. In this sense, the generalized Hough-
transform-based approaches have the advantage to construct
object detectors robust to cluttered backgrounds with a small
size of training data. In addition, sparse representations can
deal with appearance varieties of the object by the background
dictionary using limited training samples, which result in ro-
bust detection of the parts compared to Hough forest. The
robust detection of the parts and the integration of their co-
occurrences enables the accurate detection of the object class.

As shown in Figs. 3(a)(b), many of false negatives are
black cars. The main reason for this drawback is that there is
not enough characteristic parts for black cars. It is much more
challenging to distinguish black bodies and windows or dark
backgrounds. In addition, less edges around black cars result
in less searching windows for the proposed method, which is
a critical issue to use co-occurrence of parts. Higher spatial
resolution may be required to accurately detect such objects.

3.2. Ship Detection

As a second illustration of the proposed method, we turn to
ship detection examples. The test image was taken over Syd-
ney by WorldView-2 on 21 August 2012 with the 0.5 m GSD
in the panchromatic channel. The patch is 13×13 pixel size.
25 ships on the sea without no surrounding objects were used
for training data and two subimages were selected for testing.
Figs. 4(a)(b) show the ship detection results of SROL for the
two test images and Figs. 4(c)(d) show the precision-recall
curves comparing with HOG-SVM and Hough forest. Even
though the test images include berths that clutter backgrounds
relative to the training samples, the SROL method success-
fully detect the ships. HOG-SVM performed relatively better
than the case of car detection because of the simpler back-
grounds and the higher contrast between targets and back-
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Fig. 4. Ship detection results and precision-recall curves for
two test images.
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Fig. 5. Ship identification results.

grounds. The precision value of SROL decreases later than
those of other methods, which implies that SROL preferen-
tially detect parts of the target object and return their locations
owing to robust parts detection.

Finally, we show an example of identification of a specific
object. Fig. 5(a) shows the target of this experiment and Fig.
5(b) is the test image that captured two ships manually rec-
ognized as the same type with the target. Since this ship has
informative textures, we estimate its direction together with

its location. Fig. 5(c) shows the detected two ships as the top
two local maxima in the Hough image with each rectangle il-
lustrating the estimated direction of the ship. To examine the
robustness to occlusion, we added synthetic occlusion to the
test image. As shown in Fig. 5(d), the SROL method can still
localize the two ships as the 1st and 5th local maxima with the
accurate locations and orientations. This experiment proves
that the proposed method is also useful for target identifica-
tion and it works well even with occlusion when informative
textures of the target are visible.

4. CONCLUSION

We presented a novel object localization method based on
sparse representation and demonstrated its effectiveness for
remote sensing imagery. Parts of an object class or a specific
target can be detected by sparse representations using the tar-
get and background dictionaries. This parts detection is in-
tegrated with the generalized Hough-transform-based object
localisation. Experimental results on car and ship detection
demonstrated a good performance of the proposed method
compared to the state-of-the-art methods using a small size
of training samples.
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