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Object Detection Based on Sparse Representation
and Hough Voting for Optical Remote

Sensing Imagery
Naoto Yokoya, Member, IEEE, and Akira Iwasaki

Abstract—We present a novel method for detecting instances
of an object class or specific object in high-spatial-resolution
optical remote sensing images. The proposed method inte-
grates sparse representations for local-feature detection into
generalized-Hough-transform object detection. Object parts are
detected via class-specific sparse image representations of patches
using learned target and background dictionaries, and their co-
occurrence is spatially integrated by Hough voting, which enables
object detection. We aim to efficiently detect target objects using a
small set of positive training samples by matching essential object
parts with a target dictionary while the residuals are explained
by a background dictionary. Experimental results show that the
proposed method achieves state-of-the-art performance for sev-
eral examples including object-class detection and specific-object
identification.

Index Terms—Hough transforms, object detection, sparse
representations.

I. INTRODUCTION

T HE SPATIAL resolution of optical remote sensing
imagers has been improving, particularly in the last

decade, for example, the GeoEye, WorldView, and Pleiades
series. The Skysat series, first launched in November 2013,
enable the acquisition of movies with a 1-m ground sam-
pling distance (GSD) from space. These advances in sensor
technologies have led to advanced image understanding and
interpretation; however, high-spatial-resolution optical remote
sensed imagery contains a large amount of data and visual
analysis by humans is time-consuming. Therefore, automated
object detection is required to extract information from the data
along with user interpretation.

Object detection has been actively studied in the field of
computer vision. The joint use of local-feature extraction and
classification based on machine learning algorithms is an effec-
tive approach for object detection. Various feature extraction
methods, such as the use of Haar-like features, the scale-
invariant feature transform (SIFT), and histograms of oriented
gradients (HOG), have been used for many object detec-
tion tasks [1]–[3]. Neural networks, support vector machines
(SVMs), and AdaBoost are well-known classifiers used for
object recognition [1], [4], [5].
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Psychological and physiological evidence for part-based rep-
resentations in the brain has been reported in the literature
[6]–[8], and certain computational theories of object detection
are based on such representations [9], [10]. An approach that
uses the presence of individual object parts and their struc-
tural relations has been receiving particular attention for object
detection. Agarwal and Roth proposed an approach for learn-
ing a sparse, part-based representation for object detection and
showed its robustness to partial occlusion and background vari-
ation [11]. Fergus et al. presented a probabilistic approach
to learning and recognizing object class models as flexible
constellations of parts using the shape, appearance, occlusion,
and relative scale of the object [12]. In the Hough-transform-
based object detection proposed by Leibe et al., a class-specific
implicit shape model (ISM) is learned [13]; this model detects
the local appearances of class objects in accordance with a
codebook and localizes objects considering their spatial co-
occurrence consistency by the generalized Hough transform
[14]. Descriptors of points of interest in a test image are
matched against the codebook and the matches cast proba-
bilistic votes regarding possible centers of the object, which
is referred to as Hough voting. The peaks in a Hough image
that accumulates the votes from all parts represent detec-
tion hypotheses. Gall and Lempitsky proposed a class-specific
Hough forest algorithm, which uses a random forest to discrim-
inatively detect object parts and directly cast probabilistic votes
regarding possible centers of the object to generate the Hough
image [15]. The Hough forest is one of the state-of-the-art
methods for object detection.

Object detection in high-resolution remote sensing images
has different characteristics from that in ground-shot images:
objects are generally small relative to the GSD with cluttered
backgrounds; rotation invariance is required, whereas scale
invariance is not strongly required owing to the fixed GSD for
each imaging sensor. Also, the changes in appearance are rela-
tively small owing to the limited range of pointing angles. Many
researchers have studied the detection of class objects in remote
sensing imagery, such as cars, ships, and airplanes [16]–[19];
however, many of the methods they developed are ad hoc and
limited to a specific use. Lei et al. proposed an extension of
the Hough forest for object detection in remote sensing images
[20]. Its main improvement was the achievement of rotation
invariance by first detecting dominant gradient orientations and
aligning local image patches.

One drawback of machine learning methods including the
Hough forest is that they require a large set of training data
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including many positive samples with various backgrounds
in order to train classifiers that can accurately discriminate
between objects and nonobjects. For some class objects, it
may be expensive in terms of human and economic resources
to collect many high-spatial-resolution remote sensing images
and manually localize the objects with labels. In addition, for
a specific target, it may not be feasible to prepare a large
number of positive training samples since imaging sensors
with very high spatial resolution do not observe a specific
target as frequently. Therefore, it remains a challenging task
to achieve good detection performance using a small set of
positive training samples.

Recently, a great deal of attention has been paid to the the-
ory of sparse representation and compressed sensing in the
areas of signal processing, computer vision, and pattern recog-
nition [21], [22]. Sparse representations enable essential image
patterns to be found, even those with noise or occlusion, and
have been used for a wide range of image-processing appli-
cations, such as image restoration, super-resolution, and face
recognition [23]–[25]. For object detection in remote sensing,
the sparse representation perspective has been applied to tar-
get detection in hyperspectral images [26], [27]. Class-specific
sparse representations and discriminative learning have been
shown to be effective in target or anomaly detection using
spectral features [28].

In this paper, we present a novel method based on sparse
representations and Hough voting (SR-Hough) for detecting
instances of an object class or a specific object in remote
sensing imagery. Our method integrates class-specific sparse
image representations for local-spatial-feature detection into
generalized-Hough-transform object detection. Object parts are
detected by sparse representations of patches in an input image
using prelearned target and background dictionaries, and the
locations of candidate objects are determined by considering
their structural relations using generalized Hough voting. We
aim to efficiently detect target objects with a small set of pos-
itive training samples. Class-specific sparse representations for
local-feature detection are expected to deal with a cluttered
background, noises, partial occlusion, and various appearances
of objects by representing essential object parts and residuals
using the target and background dictionaries, respectively. Our
experiments are performed on car, boat, and airplane detection
as well as the identification of a specific ship to demonstrate the
efficacy of the proposed method.

This paper is organized as follows. In Section II, we describe
the methodology of the proposed method, mainly focusing
on the introduction of sparse representations into the Hough
transform framework. Experimental results are presented in
Section III to verify the performance of the proposed method
by comparison with state-of-the-art techniques for object detec-
tion. The conclusion is given in Section IV.

II. METHODOLOGY

Our proposed method can be divided into two phases: 1) a
dictionary construction; and 2) a detection procedure for train-
ing and testing, respectively. Fig. 1 shows an outline of the
detection procedure. The detection procedure of the SR-Hough

Fig. 1. Outline of the detection procedure.

algorithm is composed of four steps: 1) a sliding-window search
to extract patch images in a test image; 2) detecting parts via
the sparse representations of patches; 3) Hough voting using
offsets of detected parts of the target object and 4) finding
maxima in the Hough image. In this section, we first explain
the dictionary construction for the sparse representation as the
training phase since the second step of the detection procedure,
i.e., detecting parts via sparse representations, is the main nov-
elty of our method. Then, the entire detection procedure and
implementation are described in detail.

A. Dictionary Construction

The first task of any local-feature-based approach is to detect
object parts in a given image. Sparse representations can be
used for this purpose by employing binary class-specific dic-
tionaries. Each patch image is assumed to be a sparse linear
combination of basis vectors called atoms. A patch image y ∈
R

P is formulated as

y ≈ Dx (1)

where D ∈ R
P×N denotes the dictionary with each column

vector representing an atom, x ∈ R
N is the sparse coefficient

vector, P is the number of pixels in the patch, and N is
the number of atoms. The sparse representation assumes that
the number of nonzero values of x is much smaller than P ,
i.e., ‖x‖0 � P . Therefore, ‖x‖ is obtained by the following
optimization:

min
x

‖y −Dx‖22 subject to ‖x‖0 ≤ T0. (2)

This optimization is known as an NP-hard problem; however,
several techniques to approximately solve it, such as matching
pursuit (MP) and its extensions, have been proposed [29], [30].
In the case of ‖x‖0 = 1, the MP-based sparse representation
can be used to perform template matching using an Euclidean
distance as a similarity measurement.

When the atoms of the dictionary have class labels, i.e.,
target or background, sparse representations can be used for
detecting parts of objects. We prepare the dictionary D as the
horizontally stacked matrix [Dt Db], where Dt ∈ R

P×Nt is the
target dictionary with the column vectors representing various
parts of the target and Db ∈ R

P×Nb is the background dictio-
nary with the column vectors representing atoms of the back-
ground. Nt and Nb are the numbers of atoms in the target and
background dictionaries, respectively, and then N = Nt +Nb.
Fig. 2 illustrates the binary class-specific sparse representation
of a patch used for detecting parts of objects. Positive coef-
ficients of the target dictionary atoms, xk > 0 (k ≤ Nt), mean
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Fig. 2. Binary class-specific sparse representation of a patch.

the existence of object parts. The first step of our approach aims
to construct a structured dictionary with atoms corresponding to
the class labels so that only object parts can be detected as local
features of the object.

Learning a dictionary directly from training data usually
leads to better representation than using a predetermined dictio-
nary, such as a wavelet or Gabor dictionary, and contributes to
improved results in various applications [31], [32]. Many algo-
rithms have been studied for dictionary learning using image
examples. One of the most well-known algorithms is the K-
SVD algorithm proposed by Aharon et al. [33], which solves
the following optimization:

min
D,X

‖Y −DX‖2F subject to ∀i, ‖xi‖0 ≤ T0 (3)

where Y ∈ R
P×L is a set of L sample images, with each col-

umn vector representing an example patch, and X ∈ R
N×L is

a sparse matrix with the ith column vector xi representing the
sparse coefficient vector of the ith sample image. K-SVD iter-
atively alternates between sparse coding the examples based on
the current dictionary and updating the dictionary atoms based
on a singular value decomposition approach. Discriminative
dictionary learning methods have recently been developed
mainly for classification tasks [34]–[38]. In our method, each
detected object part must have the offset of the patch relative to
the center of the object to perform Hough voting. Therefore, we
need to keep raw image patches only for the atoms in the target
dictionary, while aiming at the construction of discriminative
background and target dictionaries. This problem setting is not
considered in common discriminative learning methods that do
not keep raw image patches.

K-SVD is used to build a reconstructive and compact back-
ground dictionary. A large number (N∗

b ) of patches that do
not include the target objects are randomly sampled as nega-
tive training samples and we denote this set of raw patches as
D∗

b . Next, K-SVD is applied to them to learn the background
dictionary Db, which can reconstruct various patch patterns
including cluttered backgrounds. In our implementation, we
construct background dictionaries depending on the GSDs of
test images because the patch patterns depend on the GSD.

To construct the target dictionary for discriminating from the
background dictionary, we adopt the random sampling of tar-
get patches and atom selection using discriminative criteria. To
achieve rotation-invariant object detection, we augment the pos-
itive training samples with rotated copies of the original training
images at 10◦ increments and obtain an initial redundant target

dictionary. Next, the number of atoms in the redundant dic-
tionary is reduced by removing samples that are very similar
to other samples. Here, the less redundant target dictionary
obtained is denoted as D∗

t . The zero-mean normalized cross-
correlation (ZNCC) [39] is used to measure the similarities
between all samples.

A target patch that is more likely to be selected as an active
atom for the sparse representation of a nontarget patch leads
to FPs. Therefore, we calculate the sparse representations of
background patches using MP as

min
X

‖D∗
b −DX‖2F subject to ∀i, ‖xi‖0 ≤ T0 (4)

where D = [D∗
t Db]. All the coefficients of each atom are

accumulated as
∑N∗

b
m=1 Xnm. A high cumulative value for

a target patch indicates that the patch easily generates FPs.
Finally, target patches with cumulative coefficients smaller than
a predefined threshold (e.g., 0.5 in this work) are selected as
discriminative patches, which form a subset of D∗

t . This sub-
dictionary is used as Dt to make the target dictionary more
discriminative and compact. The offset (δik, δjk) of the patch
center from the target center must be linked to the patch, i.e.,
the kth atom in Dt (k = 1, . . ., Nt). When the targets have a
sufficient number of spatial features, it is possible to estimate
their orientations. In this case, the orientation of the target (θk)
is also linked to the patch.

B. Sparse-Representation-Based Hough Voting

1) Patch Sampling: A sliding-window search of all patches
in a test image is time-consuming. Interest point detectors, such
as Harris and difference-of-Gaussian detectors [2], [40], have
been widely used for Hough-transform-based object detection;
however, the small sizes of objects in remote sensing images
require a lower level-feature detector to perform a sliding-
window search. Therefore, we use edges obtained by the Canny
edge detector for the sliding-window search [41]. In this case,
the target dictionary can be effectively generated by sam-
pling patches along edges to ensure the consistency of patches
between the dictionary and test images. The patch size (t) is
defined relative to the object size as t = k

√
wh, where w and

h are the width and height of the object, respectively, and k
is a parameter. In this work, k is set to approximately 0.5 for
all objects. The influence of this parameter on the detection
performance is discussed in the experimental part.

2) Parts Detection: For a patch with its center located at
(i, j) in the test image, the sparse representation x is obtained
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Fig. 3. Positive training samples of: (a) cars; (b) boats; and (c) airplanes.

by solving the optimization problem of (2) using the learned
dictionary D. In this work, we adopt MP to solve (2) owing to
its mathematical simplicity and low computational cost. When
there are positive coefficients of the target atoms in the sparse
representation, only the kth atom (k ≤ Nt) with the maximum
coefficient is considered to be a part of the target, assuming
that two or more objects do not exist in one patch. Since the
relative center of the target is attached to each target atom, the
positive coefficient xk suggests that the target may be located
at (i+ δik, j + δjk).

3) Hough Voting: A higher value of xk indicates a higher
correlation between the given patch and the part of the tar-
get dk, and thus a higher existence probability of the target.
Therefore, we cast the vote of the value xk to the loca-
tion (i+ δik, j + δjk), which is the generalized Hough voting
procedure using only the object center as parameters. The two-
dimensional (2-D) Hough image can be obtained as a result
of iterating this process for all patches, which represents the
existence probability of the target.

4) Detection Hypothesis: The target objects can be simply
detected by returning the set of locations where the maxima are
greater than some threshold τ in the Gaussian-filtered Hough
image. A Gaussian blur filter with its full width at half maxi-
mum set to the size of the smaller side of the target object is
useful for smoothing the Hough image to effectively find its
maxima. An alternative means of finding the maxima of the
Hough image is the use of the mean-shift procedure or the iter-
ative greedy maximum a posteriori inference technique [15],
[20]. For a target with a sufficient number of spatial features,
the orientation of a detected object can also be estimated as
a weighted sum of the orientation vectors of the votes con-
tributing to a detection hypothesis. The orientation is given by

arctan
(∑

l∈ψ xl sin θl∑
l∈ψ xl cos θl

)
, where ψ is the set of votes in the area

surrounding a detection hypothesis and l is the index of the
votes.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed method by demon-
strating four applications: three examples of object-class detec-
tion and one example of specific-object identification.

In the object-class detection, the proposed method is com-
pared to state-of-the-art methods, i.e., the joint use of HOG
and SVM (HOG-SVM) and the rotation-invariant Hough for-
est. For the Hough forest, grayscale images are used in this
work instead of color-invariant gradient channels presented
in [20] because our experiments include the use of panchro-
matic images and grayscale illustrations. A special case of the

proposed method, which does not use Hough voting with the
offset of the atoms in the target dictionary being zero, can be
seen as a sparse-representation-based template matching (SR-
TM) [42]. It is also included in the numerical evaluation to
see the effectiveness of the generalized Hough transform. We
use the same window search along edges for SR-Hough and
the Hough forest to ensure a fair comparison. In contrast, a
greedy search is adopted for HOG-SVM and SR-TM. The patch
size is optimized for each method. The patch size for HOG-
SVM and SR-TM is set larger than that of SR-Hough and the
Hough forest to include a major part of an object. A detection
result is counted as a true positive (TP) when its Euclidean
location error from the ground truth is less than the width
of the target object. Each target object can be detected only
once and duplicate detections of the same object are counted
as false positives (FPs). Target objects that are not detected
are false negatives (FNs). A precision-recall curve is used to
quantitatively evaluate the detection performance. Precision is
defined as (TP)/(TP+FP) and recall is defined as (TP)/(TP+FN).
The area under the precision-recall curve (AUPRC) is used to
quantify the overall detection accuracy.

We demonstrate three examples of object-class detection:
1) car; 2) boat; and 3) airplane detection. Discriminative atom
selection for the target dictionary is applied to only airplane
detection since it does not improve the results of car and
boat detection owing to the low-level spatial features of their
patches. Estimation of the orientation is also conducted for only
airplane detection because cars and boats do not have a suf-
ficient number of spatial features to determine the front and
rear.

A. Car Detection

First, we report an experiment on car detection using airborne
images. RGB images were taken over urban areas of Tokyo,
Japan, from an altitude of approximately 1000 m with a 0.2-m
GSD on August 11, 2013. Three images that include 195 cars
with various backgrounds are used for testing. The images were
converted to lab color space and the lightness channel was used
for processing. Fig. 3(a) shows the 36 positive samples used
for training. The patch sizes are 9×9 pixels for SR-Hough and
the Hough forest and 21×21 for HOG-SVM and SR-TM. 5200
positive and 10 000 negative patches are used for SR-Hough
and the Hough forest. We set the size of the background and
target dictionaries as Nb = 50 and Nt = 3000, respectively.

A comparison of the precision-recall curves is shown in
Fig. 4(a) and the AUPRC is presented in Table I. As shown
in these numerical evaluation, SR-Hough clearly outperforms
the other methods. One of the reasons for the low performance
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Fig. 4. Precision-recall curves obtained by SR-Hough, Hough forest, HOG-SVM, and SR-TM for: (a) car; (b) boat; and (c) airplane detection.

TABLE I
AUPRC OBTAINED BY SR-HOUGH, HOUGH FOREST, HOG-SVM,

AND SR-TM FOR CAR, BOAT, AND AIRPLANE DETECTION

of HOG-SVM is that the amount of training data may not
be sufficient for constructing an accurate classifier. Generally,
machine-learning classifiers (e.g., SVM) require a large set
of training data containing various appearances of an object
class. Since the patch size of HOG-SVM is larger than those
of SR-Hough and the Hough forest, more training samples are
necessary to learn the various effects of backgrounds. In this
sense, the Hough transform framework has the advantage of
constructing object detectors that are robust to cluttered back-
grounds using a small set of training data. The effectiveness
of Hough voting is also proved by the advantage of SR-Hough
compared with SR-TM. In addition, sparse representations can
deal with the variations of appearance of an object by using a
background dictionary with a limited number of training sam-
ples, which results in the robust detection of parts compared
with the Hough forest. The robust detection of parts and the
integration of their co-occurrences enable the accurate detection
of class objects.

Fig. 5 shows the car detection results obtained by SR-
Hough for the three test images at precision = 0.896 and
recall = 0.754. As shown in Fig. 5, many of FNs are black cars.
This is mainly because there are an insufficient number of char-
acteristic parts for black cars. It is difficult even for humans to
distinguish black bodies from windows or dark backgrounds
in a local patch. In addition, the fewer visible edges around
black cars result in fewer searching windows for the proposed
method, which is a critical issue when using the co-occurrence
of parts. Higher spatial resolution may be required to accurately
detect such objects.

B. Boat Detection

As the second illustration of the proposed method, we turn
to boat detection. The study image was taken over Sydney by
WorldView-2 on August 21, 2012 with a 0.5-m GSD in the

panchromatic channel. Two subimages of wharfs that include
74 boats were selected for testing. From the remainder of the
image, 25 boats on the sea that were not surrounded by other
objects, as shown in Fig. 3(b), and background areas were
extracted and used for training. The patch sizes are 11×11
pixels for SR-Hough and the Hough forest and 21×21 for
HOG-SVM and SR-TM. 4300 positive and 10 000 negative
patches are used for SR-Hough and the Hough forest. We set
the size of the background and target dictionaries as Nb = 100
and Nt = 3000, respectively.

Fig. 4(b) shows the precision-recall curves for the four
method and their AUPRC is shown in Table I. SR-Hough and
the Hough forest perform very well. Fig. 6 shows the boat
detection results obtained by SR-Hough for the two test images
at precision = 0.849 and recall = 0.880. Even though the test
images include berths, which result in cluttered backgrounds
compared with the positive training samples, the SR-Hough
method successfully detected the boats. HOG-SVM performed
relatively better than in the case of car detection because of the
simpler backgrounds and the higher contrast between targets
and backgrounds. The precision of SR-Hough decreases at a
higher recall than those of other methods, which implies that
SR-Hough preferentially detects parts of the target object and
returns their locations owing to the robust detection of parts.

C. Airplane Detection

Thirdly, we present an experiment on airplane detection. The
study images include 55 airplanes, which were taken over New
Chitose Airport, Hokkaido, Japan, and Los Angels Airport,
CA, US, by GeoEye-1 with a 0.5-m GSD in the panchro-
matic channel. This experiment demonstrates the effectiveness
of the proposed method when illustrations are used for positive
training samples. One issue in conventional object detection
techniques based on feature extraction and classifiers is that
they require a large set of training data with various appearances
of the object class to construct an accurate classifier. However,
it is time-consuming and expensive to collect such a large set
of positive training samples from satellite images with very
high spatial resolution. One benefit of remote sensing for object
detection is that images are usually orthorectified, and thus the
appearances of the object class do not change by as much as
those in ground-shot images. If it is possible to detect instances
of an object class with a small set of typical shape information,
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Fig. 5. Car detection results for three test images obtained by SR-Hough at precision = 0.896 and recall = 0.754.

Fig. 6. Boat detection results for two test images obtained by SR-Hough at precision = 0.849 and recall = 0.880.

Fig. 7. Airplane detection results obtained by SR-Hough at precision = 0.833 and recall = 0.909.

such as illustrations, it will reduce the cost of collecting positive
training samples.

Seven illustrations of airplanes, as shown in Fig. 3(c), were
used as the positive training samples and background patches
were randomly sampled from other images with the same GSD.

The experiment was conducted with a 1-m GSD to reduce the
computational cost. The patch sizes are 25×25 pixels for SR-
Hough and the Hough forest, and 32×32 pixels for HOG-SVM
and SR-TM. 1800 positive and 10 000 negative patches are used
for SR-Hough and the Hough forest. We set the size of the
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Fig. 8. AUPRC maps with respect to the patch size t for: (a) car; (b) boat; and (c) airplane detection. Each map is obtained by using various combinations of the
number of atoms in background and target dictionaries denoted as Nb and Nt, respectively.

background and target dictionaries asNb = 500 andNt = 800,
respectively. A comparison of the precision-recall curves for the
different methods and the corresponding AUPRC is presented
in Fig. 4(c) and Table I, respectively. Fig. 7 shows the detection
result for SR-Hough at precision = 0.833 and recall = 0.909.
Using only the seven illustrations, SR-Hough accurately detects
airplanes and estimates their orientations even with cluttered
backgrounds, such as shadows. SR-Hough and SR-TM clearly
outperforms HOG-SVM and the Hough forest, which implies
the advantage of the sparse-representation-based methods that
the target dictionary can represent the essential local features of
airplanes and the residual appearance can be explained by the
background dictionary. HOG-SVM and the Hough forest failed
to learn an accurate classifier, resulting in many FPs, which
mainly appeared in areas of the airport with the spatial char-
acteristics of a cross or a line. The proposed method has major
potential because it works well with a small set of positive train-
ing samples, even with illustrations, in contrast to conventional
methods for object detection.

D. Sensitivity of Parameters and Computation Time

We investigate the influence of parameters, such as the patch
size (t), the number of atoms in the background and target
dictionaries (Nb and Nt). Fig. 8 shows AUPRC maps with
respect to the patch size, with each map being obtained by using
various combinations of Nb and Nt. It visualizes the influence
of the three parameters for: a) car; b) boat; and c) airplane
detection.

For car detection, the AUPRC is large with t = 9 and 11,
which correspond to k ≈ 0.45 and 0.55. In each AUPRC map,

TABLE II
COMPUTATION TIME (SEC) OF TRAINING AND TESTING PHASES FOR

CAR, BOAT, AND AIRPLANE DETECTION. TOTAL IMAGE SIZE

(MEGAPIXEL) IS PRESENTED FOR EACH OBJECT-CLASS DETECTION

TABLE III
RATIOS OF CUMULATIVE VALUES CASTED IN TRUE POSITIONS

TO THE TOTAL VOTING

the combination of the smaller Nb and the larger Nt results in
the better performance. It may be because the positive train-
ing samples of cars contain some degree of background variety
compared with those of boats and airplanes, and thus more
sampling of patches for the target dictionary can result in accu-
rate detection of object patches. In addition, since the spatial
patterns of cars are simple in the GSD used in this experiment
and the optimal patch size is small, the small number of Nb

may be enough to avoid representing the target patch by only
the background dictionary.

For boat detection, the AUPRC stably shows the best result
with t = 13 (k ≈ 0.6) followed by those with t = 11 and 15. In
contrast to car detection, the smaller Nb not always results in
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Fig. 9. Hough images for car detection (left three columns) and boat detection (right two columns) obtained by (top) SR-Hough and (bottom) Hough forest.

the better performance. This is because the backgrounds of the
positive training samples are simple and the larger patch size
requires some amount of Nb to represent various backgrounds.

For airplane detection, the AUPRC is large with t = 25 and
29 (k ≈ 0.4 and 0.45). In contrast to car and boat detection,
the AUPRC increases when the size of the atoms in the target
dictionary (Nt) is reduced from the initial number of patch sam-
pling. Especially, the detection performance is stably good with
Nt = 800 and 1200. It proves the effectiveness of discrimina-
tive atom selection for the target dictionary. The smaller Nb not
always results in the better performance. Some amount of Nb

is required owing to the larger patch size to represent various
backgrounds.

From these discussions mentioned above, the criteria for set-
ting the parameters can be roughly considered as follows. The
optimal patch size can be defined by setting k ≈ 0.5. The size
of the background dictionary (Nb) can be set to approximately
t2 and that of the target dictionary (Nt) can be reduced to the
half size of the initial number of positive patches.

The computation time of training and testing is summarized
in Table II. For all the methods, the testing phase takes more
time than the training phase. The computation cost of HOG-
SVM and SR-TM for testing is high owing to a greedy search.
The computation time of the proposed method for testing is
proportional to the patch size and the number of extracted
test patches along edges, which is defined by the total image
size and the spatial complexity. Accordingly, when the patch
size is small, e.g., t = 9 for car detection and t = 11 for boat
detection, the computation time of SR-Hough is reasonable
compared with those of the Hough forest. In contrast, in the
case of airplane detection with t = 25, the computation time is
relatively high.

E. SR-Hough Versus Hough Forest

Here, we discuss the difference between SR-Hough and
the Hough forest since the two methods are based on the
generalized Hough-transform framework, which comprises the

detection of parts and their co-occurrences. The detection
performance depends on whether the peak in the Hough image
is in the true position of the object. We evaluate the accuracy of
Hough voting by investigating the ratio of the cumulative values
casted in the true positions to the total voting. Table III shows
the ratios for the three examples of object-class detection, and
SR-Hough shows stable performance for the variety of objects
and backgrounds compared with the Hough forest. This implies
that the detection of parts by the proposed method is robust
and accurate with a small set of positive training data owing
to image decomposition by binary class-specific sparse repre-
sentations. The class-specific sparse representations can accu-
rately detect only parts with unknown backgrounds because
the background effects may be flexibly explained by the back-
ground dictionary, whereas random forests may lead to the
misclassification of unknown backgrounds as the classification
performance is determined by the variety of training data.

Fig. 9 shows the Hough images for car and boat detection
obtained by SR-Hough and the Hough forest on the top and
bottom rows, respectively. The Hough images for SR-Hough
show sparse distributions of votes and sharp peaks relative to
those for the Hough forest. SR-Hough casts only one vote for
each patch and the voting value reflects the degree of matching
of object parts, i.e., when a patch mainly includes a part of the
object, the voting value is close to 1; otherwise, it is close to
0. In contrast, the Hough forest casts multiple votes as a result
of the bagging approach of random forests, and thus its voting
values are distributed between 0.5 and 1.0. Since SR-Hough
results in sparse voting and sharp maxima in Hough images,
the blurring process of the Hough image is necessary to find
maxima.

F. Ship Identification

Finally, we show an example of specific-object identifica-
tion. Fig. 10(a) shows the target ship in this experiment and
Fig. 10(b) shows the test image extracted from the study image
used for boat detection. This image captures two ships manually



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YOKOYA AND IWASAKI: OBJECT DETECTION BASED ON SPARSE REPRESENTATION AND HOUGH VOTING 9

Fig. 10. (a) Target ship and (b) test image used for ship identification.
(c) Gaussian-blurred Hough image obtained by SR-Hough with two rectangles
indicating subimages of TPs (ships A and B). Enlarged subimages of detected
objects for (d) original data and synthetic data with (e) stripe noise, (f) Gaussian
noise, and (g) partial occlusion.

recognized as being of the same type as the target. Since this
ship has informative spatial features, its orientation is estimated
as well as its location. The experiment was conducted with
a 1-m GSD and a patch size of 13×13 pixels to reduce the
computational cost.

Fig. 10(c) shows a Gaussian-blurred Hough image with two
rectangles located at the top two maxima. The corresponding
enlarged subimages are shown in Fig. 10(d), where each rect-
angle indicates a detection hypothesis illustrating the estimated
location and orientation of the ship. To examine the robustness
of the proposed method against noise and partial occlusion,
we added synthetic stripe noise, Gaussian noise, and a partial
occlusion to the test image. As shown in Figs. 10(e)–(g),
the SR-Hough method can still detect the two ships as
higher-order maxima with accurate locations and orientations.
Table IV shows the order of the maximum detected as the TP

TABLE IV
DETECTION ORDERS AND RATIOS OF THE MAXIMUM IN THE HOUGH

IMAGE DIVIDED BY THAT OF THE FIRST FP WITH AND WITHOUT

DISCRIMINATIVE ATOM SELECTION IN TARGET DICTIONARY

CONSTRUCTION

and the ratio of the maximum divided by that of the first FP.
A comparison between the SR-Hough methods with and with-
out discriminative atom selection for the target dictionary is
presented to investigate the effectiveness of the discriminative
dictionary construction. Many of the ratios are increased by dis-
criminative atom selection, resulting in higher detection orders
of the TPs. This experiment demonstrates that the proposed
method is also useful for specific-object identification and that
it works well even with noise and partial occlusion when the
target has informative spatial features. Note that if the number
of expected target is unknown, a large amount of FPs can be
produced by the identification procedure. Therefore, additional
user interpretation of the result is necessary in practical use.

IV. CONCLUSION

We have proposed a novel method for object detection based
on sparse image representations and demonstrated its effec-
tiveness for remote sensing imagery. Parts of class objects
or a specific object are detected by the sparse representation
of each patch using learned target and background dictionar-
ies. Whenever a part is detected, the center of the object is
activated within the Hough transform framework so that the
co-occurrence of parts can be used for object detection. The
proposed method can efficiently detect instances of an object
class or specific object with a small set of positive training sam-
ples since the essential object parts of the target are matched
with target atoms while the residuals are explained by a back-
ground dictionary. We have shown that the proposed method
leads to state-of-the-art object detection results in experiments
on car, boat, and airplane detection as well as ship identifica-
tion with a cluttered background, noise, and partial occlusion.
Our future work includes determining the number and size of
raw patches suitable for dictionary construction and further
investigation of how to construct discriminative class-specific
dictionaries.
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