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ABSTRACT

Data fusion of low spatial-resolution hyperspectral (HS) and
high spatial-resolution multispectral (MS) images based on
a linear mixing model (LMM) enables the production of
high spatial-resolution HS data with small spectral distor-
tion. This paper extends the LMM based HS-MS data fusion
to nonlinear mixing model using a bilinear mixing model
(BMM), which considers second scattering of photons be-
tween two distinct materials. A generalized bilinear model
(GBM) is able to deal with the underlying assumptions in the
BMM. The GBM is applied to HS-MS data fusion to produce
high-quality fused data regarding multiple scattering effect.
Semi-nonnegative matrix factorization (Semi-NMF), which
can be easily incorporated with the existing LMM based fu-
sion method, is introduced as a new optimization method for
the GBM unmixing. Comparing with the LMM based HS-
MS data fusion, the proposed method showed better results
on synthetic datasets.

Index Terms— Data fusion, nonlinear unmixing, bilinear
mixing model, semi-nonnegative matrix factorization

1. INTRODUCTION

Hyperspectral (HS) imaging sensors generally have larger
ground sampling distance (GSD) than multispectral (MS)
imaging sensors. Data fusion of low spatial-resolution HS and
high spatial-resolution MS images enables the production of
high spatial-resolution HS data with small spectral distortion
[1], [2]. The fused data is useful for accurate classification
with fine spatial resolution and thereby enhance applica-
tions of HS remote sensing. Several HS-MS fusion methods
are proposed using pan-sharpening techniques, stochastic
method, and unmixing [1], [2]. A maximum a posteriori
(MAP) estimation method was developed to enhance the spa-
tial resolution of HS data using higher spatial-resolution data
such as MS and panchromatic images [1]. This approach
used a stochastic mixing model (SMM), which estimates the
underlying spectral scene characteristics, in order to develop
a cost function that optimizes the estimated HS data relative
to the observed HS and MS data. An unmixing based fusion

method, namely the ’coupled nonnegative matrix factoriza-
tion’ (CNMF), was recently proposed to enhance spatial
resolution of all HS bands. It is based on a linear mixing
model (LMM) [2]. This algorithm extracts endmember spec-
tra and high spatial-resolution abundance maps from two
images by alternate nonnegative matrix factorization (NMF)
[3]. Since CNMF can increase the number of endmembers
compared with the MAP/SMM, it has a possibility to deal
with spectrally more varied scenes.

Many researchers have worked on spectral unmixing with
the LMM that assumes that an observed spectrum is a linear
combination of several endmember spectra. Although LMM
based unmixing methods can obtain physically meaningful
results, nonlinearity can appear in spectral mixing model [4],
[5]. In recent years, nonlinear unmixing for HS images is
receiving growing attention in remote sensing image inter-
pretation. A bilinear mixing model (BMM), which considers
second scattering of photons between two distinct materials,
has been studied by several groups [6], [7]. A generalized
bilinear model (GBM) introduces an effective mean to deal
with the underlying assumptions in the BMM [7], [8]. In this
work, the authors apply the GBM unmixing to HS-MS data
fusion to improve the quality of the fused data introducing
semi-nonnegative matrix factorization (Semi-NMF) [9] as a
new optimization for the GBM unmixing.

2. GBM VIA SEMI-NMF

The BMM considers second-order interactions between dif-
ferentD endmembers as additional terms in the LMM assum-
ing that third or higher order interactions are negligible. In the
BMM, the observedL-spectrum of a single pixelz ∈ RL×1 is
given by:

z = Ea+
D−1∑
i=1

D∑
j=i+1

bi,jei ⊙ ej + n, (1)

whereE ∈ RL×D is the endmember matrix with thei th col-
umn vector,ei ∈ RL×1 representing thei th endmember spec-
trum, a ∈ RD×1 is the abundance vector,bi,j is the interac-
tion abundance between thei th andj th endmembers,⊙ is the



Hadamard (element-wise product) operation, andn ∈ RL×1

is the additive noise. On the right side, the first term denotes
the linear mixing and the second term represents the bilinear
mixing. From a physical perspective, the GBM introduces
the nonlinear mixing coefficientci,j as bi,j = ci,jaiaj and
assumes the following constraints:

ai ≥ 0 ∀i ∈ 1, ..., D and

D∑
i=1

ai = 1,

0 ≤ ci,j ≤ 1 ∀i ∈ 1, ..., D − 1 ∀j ∈ i+ 1, ..., D.

(2)

When the endmembers are known, the GBM unmixing turns
to the optimization ofai andci,j under the constraint of (2).
Several optimization methods are proposed in [8].

The GBM method was applied to small images of syn-
thetic and real HS data with three endmembers [7], [8].
When applied to larger images in an unsupervised manner
with many endmembers, the optimization process becomes
more challenging. The new optimization method based on
semi-nonnegative matrix factorization (Semi-NMF) [9] is
introduced to speed up the optimization process of a whole
image in a matrix form, which can be easily incorporated
with CNMF. The observed HS image can be reshaped as a
matrix form Z ∈ RL×P with P representing the number of
pixels. The BMM for the whole image is given in a matrix
form by

Z = EA + MB + N, (3)

whereA ∈ RD×P is the abundance matrix,M ∈ RL×D(D−1)/2

is the bilinear endmember matrix,B ∈ RD(D−1)/2×P is the
interaction abundance matrix, andN ∈ RL×P is the noise
matrix. The GBM unmixing becomes the minimization of
∥Z − EA − MB∥2F , subject toA ⪰ 0 ,

∑D
i=1 Ai,k = 1

(∀k ∈ 1, ..., P ), 0 ⪯ B ⪯ A∗, whereA∗(i,j),k = Ai,kAj,k. By
introducingZ1 = Z − MB andZ2 = Z − EA, (3) is written
as follows

Z1 = EA + N and Z2 = MB + N. (4)

Owing to physical constraints, all components ofE, M , A,
and B are nonnegative. Therefore, minimization of∥N∥2F
in (4) can be solved by Semi-NMF that factorizes a non-
restricted matrixX into a non-restricted matrixF and a non-
negative matrixGT asX ≈ FGT [9]. Semi-NMF optimiza-
tion is guaranteed to converge to a local optimum with the
alternative update rules. WithE given andM calculated from
E, the GBM unmixing is solved by the following update rules
for A andB:

AT←AT .∗
√

((ZT
1 E)++AT (ET E)−)./((ZT

1 E)−+AT (ET E)+) (5)

BT←BT .∗
√

((ZT
2 M)++BT (MT M)−)./((ZT

2 M)−+BT (MT M)+) (6)

where.∗ and./ denote elementwise multiplication and divi-
sion. (C)+ and(C)− are the positive and negative parts of a
matrixC defined asC+ = (|C|+ C)/2, C− = (|C| − C)/2.

The GBM unmixing via Semi-NMF is as follows. First,
A is initialized by the fully constrained least square (FCLS)
method [10],A∗ is calculated, andB is set asδ × A∗ with
small value ofδ. Next,A andB are alternately updated by (5)
and (6). If any element ofB exceeds that ofA∗, it is replaced
by that ofA∗. To satisfy the abundance sum-to-one constraint,
the method from [10] is adopted.

3. HS-MS DATA FUSION BASED ON GBM

The aim of HS and MS data fusion is to estimate unobserv-
able high spatial-resolution HS data (Z ∈ RL×P ) from ob-
served low spatial-resolution HS data (X ∈ RL×Ph) and high
spatial-resolution MS data (Y ∈ RLm×P ). Lm denotes the
number of spectral channels of MS sensor.Ph denotes the
number of pixels of HS images. Owing to the trade-off be-
tween spectral and spatial resolutions of two sensors,L > Lm

andPh < P are satisfied. The observed two data are assumed
to be obtained under the same atmospheric and illumination
conditions, and geometrically co-registered with radiometric
correction. The HS and MS images can be considered as the
degraded versions from the high spatial-resolution HS image
in spatial and spectral domains, respectively. Therefore,X
andY are modeled as

X = ZS+ Ns, (7)

Y = RZ + Nr. (8)

Here, S ∈ RP×Ph is the spatial spread transform matrix
with each column vector{sl}Ph

l=1 ∈ RP×1 representing the
transform of the point spread function (PSF) from the MS
image to the HSl th pixel value. Each PSF is assumed to
be normalized, i.e.,

∑Lm

k=1 skl = 1. R ∈ RLm×L is the
spectral response transform matrix with each row vector
{r i}Lm

i=1 ∈ R1×L representing the transform of the spectral
response function (SRF) from the HS sensor to the MSi th
band detector.Ns andNr are the residuals.

3.1. The CNMF algorithm

First, we summarize the CNMF method that was proposed
for HS-MS data fusion based on the LMM [2]. The CNMF
method is composed of alternate NMF unmixing for HS and
MS images to extract high spectral-resolution endmember
spectra and high spatial-resolution abundance maps. In the
LMM, the spectrum at each pixel is assumed to be a linear
combination of several endmember spectra, which is the sim-
ple version without the bilinear term in (3). Therefore,Z is
formulated asZ ≈ EA. The spatially degraded abundance
matrix Ah ∈ RD×Ph and the spectrally degraded endmem-
ber matrix Em ∈ RLm×D are defined asAh = AS and
Em = RE, respectively. By substitutingZ ≈ EA into (7) and
(8), X andY are approximated asX ≈ EAh andY ≈ EmA,
respectively.
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Fig. 1. Illustration of HS-MS data fusion based on GBM.

Owing to the non-negative characteristics ofS, R, E, and
A, all components ofAh andEm are also non-negative.Z can
be estimated by unmixingX andY to obtainE andA, using
alternate NMF unmixing. The CNMF algorithm starts from
the NMF unmixing ofX to use its spectral advantage.E is ini-
tialized by the vertex component analysis (VCA) [11]. Next,
X andY are alternately unmixed by NMF usingAh = AS and
Em = RE for the initialization ofAh andEm, respectively.
Finally, the high spatial-resolution HS image is estimated by
multiplication ofE andA. More details concerning CNMF is
given in [2].

3.2. CNMF with GBM

The GBM via Semi-NMF can be incorporated into the
framework of the CNMF algorithm. Here, the authors de-
fine the spatially degraded interaction abundance matrix
Bh ∈ RD×Ph and the spectrally degraded bilinear end-
member matrixMm ∈ RLm×D asBh = BSandMm = RM ,
respectively. By substituting (3) into (7) and (8),X andY can
be approximated as

X ≈ EAh + MBh, (9)

Y ≈ EmA + MmB. (10)

First, E, Ah, Em, andA are initialized by CNMF. Next,
Ah and Bh are estimated by the GBM unmixing ofX via
Semi-NMF.A andB are initialized by bilinear interpolation
of Ah andBh, respectively. Finally,A andB are optimized
by the GBM unmixing ofY, and the fused image (Z) is ob-
tained byZ ≈ EA + MB . The bilinear interpolation is em-
pirically important for the initialization ofA andB in the last
GBM unmixing of MS image because the GBM unmixing via
Semi-NMF converges to a local minimum. Fig. 1 shows the
illustration of the proposed method (GBM-CNMF).

4. EXPERIMENTAL STUDY

The proposed HS-MS data fusion technique is applied to syn-
thetic datasets generated from the airborne visible infrared
imaging spectrometer (AVIRIS) data. The image was taken

over Cuprite, Nevada, in 1997 with 224 spectral bands in the
400-2500 nm region. The data initially measured as radiance
was converted into reflectance. The 150x150 pixel-size image
is selected with 189 bands eliminating noisy bands and the
MS and low spatial-resolution HS datasets are generated by
down-sampling the original HS data in the spectral and spa-
tial domains, respectively. The spatial-resolution difference
and SNR of two sensors are determined considering the speci-
fication of Hyperspectral Imager Suite (HISUI) [12], which is
composed of HS and MS sensors and will be launched on the
Japanese next generation earth observing satellite (Advanced
Land Observing Satellite 3 (ALOS-3)) in 2015. The MS data
is produced with an uniform SRF corresponding to Landsat
TM bands 1-5 and 7. The low spatial-resolution HS data is
generated by a Gaussian PSF with full width at half maxi-
mum, corresponding to six pixels in the original high spatial-
resolution HS image, which makes a six times difference in
the spatial resolution between two sensors. Therefore,R and
S are given as sparse matrices with each row vector corre-
sponding to a uniform SRF and with each column vector rep-
resenting a Gaussian PSF, respectively. In addition, Gaussian
noise was added to the two data assuming that the signal-to-
noise ratios (SNR) of HS and MS sensors are 300 and 200,
respectively.

The performance of HS and MS data fusion was evalu-
ated by comparing the estimated high spatial-resolution HS
data with the original data with two criteria: the spatial qual-
ity of each spectral band image and the spectral quality of
each spectrum for a single pixel. To evaluate the spatial re-
construction quality, the peak signal-to-noise ratio (PSNR) is
adopted. To evaluate the spectral reconstruction quality, the
authors used the spectral angle error (SAE) between the esti-
mated spectrum and the actual spectrum.

Fig. 2 shows the low spatial-resolution HS image and the
fused image obtained by GBM-CNMF. The proposed method
is evaluated by comparing with CNMF. Fig. 3 shows the av-
erage values of PSNR and SAE, and computational time with
a varying number of endmembers (D). The performances of
two methods converge aroundD=20 and GBM-CNMF shows
better results in the two criteria with all numbers of endmem-
bers. This result proves that the nonlinear mixing effect of
multiple reflection is contained in the original HS image and
that the GBM unmixing via Semi-NMF works well for both
HS and MS images reducing unmixing residual errors. Al-
though there is an obvious quality improvement of GBM-
CNMF from CNMF, computational time becomes large. For
practical use, regarding the computational time, the data fu-
sion process should be processed with partial images using
parallel computing. Fig. 4 shows the PSNRs for all bands
and the histogram of SAE with SAE maps withD=10. GBM-
CNMF improves the PSNRs of the fused data in near infrared
and short wavelength infrared spectral ranges. It indicates that
the GBM unmixing mainly deal with multiple scattering ef-
fects in these spectral ranges for this scene. The histogram of



Fig. 2. Low spatial-resolution HS image (left) and GBM-
CNMF fused image (right).
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Fig. 3. Effect of the number of endmembers on (a) PSNR, (b)
SAE, and (c) computational time.

SAE and SAE maps show the spectral quality improvement of
GBM-CNMF. The areas where there remain some amount of
SAE have a possibility to contain the other nonlinear mixing
effect.

5. CONCLUSION

In this work, a new HS-MS data fusion method based on the
GBM unmixing is proposed. A semi-NMF based optimiza-
tion method is introduced for the GBM unmixing and incor-
porated into the HS-MS data fusion algorithm based on linear
unmixing (CNMF) to consider the nonlinear mixing caused
by multiple scattering. The experiments with synthetic HS-
MS datasets generated from AVIRIS image show that the pro-
posed HS-MS data fusion method based on the nonlinear un-
mixing outperforms the CNMF method. The GBM unmixing
works well for both HS and MS images with better unmixing
residual errors and thereby improves the quality of the HS-MS
fused data. Future works include further experiments for var-
ious kinds of scenes and the improvement of computational
cost using parallel computing.
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