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ABSTRACT

We present an airborne experiment on unmixing-based hyper-
spectral super-resolution using RGB imagery to examine the
restoration of pure spectra comparing with ground-measured
spectra and demonstrate its impact on target detection. An
extended version of coupled nonnegative matrix factorization
(CNMF) is used for hyperspectral super-resolution to deal
with a challenging problem setting. Our experiment showed
that the extended CNMF can restore pure spectra, which con-
tribute to accurate target detection.

Index Terms— Hyperspectral super-resolution, data fu-
sion, unmixing, coupled nonnegative matrix factorization
(CNMF)

1. INTRODUCTION

Hyperspectral (HS) imagers generally have a larger ground
sampling distance (GSD) than multispectral (MS) imagers
owing to a trade-off of sensor design between spatial and
spectral resolutions and the signal-to-noise ratio. HS and MS
data fusion enables super-resolution of HS data [1, 2, 3]. A
Bayesian approach was first proposed for HS super-resolution
using MS data [1, 2]. Unmixing-based HS and MS data fu-
sion can enhance the spatial resolution of HS data with little
spectral distortion [3]. An unmixing-based HS and MS data
fusion method, named coupled nonnegative matrix factoriza-
tion (CNMF), was proposed for remote sensing [3]. CNMF
is composed of alternating unmixing for two images using
nonnegative matrix factorization (NMF) [4].

HS and MS data can be represented in matrix form as X ∈
RLh×Ph and Y ∈ RLm×Pm , respectively. Lh and Lm denote
the numbers of spectral bands, and Ph and Pm denote the
numbers of pixels. The high-spatial-resolution HS data to be
estimated is denoted as Z ∈ RLh×Pm . The spectrum at each
pixel z ∈ RLh×1 is assumed to be a linear combination of
several endmember spectra. Therefore, Z is formulated as

Z = EA+N, (1)

where E ∈ RLh×M is the endmember matrix and M being
the number of endmembers. A ∈ RM×Pm is the abundance
matrix and N ∈ RLh×Pm is the residual. Unmixing-based HS

and MS data fusion yields estimates of E and A from observ-
able X and Y to reconstruct Z. The low-spatial-resolution
HS data and MS data are modeled as

X = ZS, Y = RZ. (2)

Here, S ∈ RPm×Ph is the spatial response transform matrix
and R ∈ RLm×Lh is the spectral response transform ma-
trix, which are defined as relative sensor characteristics in
the spatial and spectral domains, respectively. By substitut-
ing (1) into (2) and (3), X and Y can be approximated as two
LSMMs:

X ≈ E(AS), Y ≈ (RE)A. (3)

E and A can be obtained by alternating unmixing of X and
Y under the constraints of the relative sensor characteristics
(R and S). Here, we define Ah = AS and Em = RE
as degraded versions of A and E, respectively. Spatial and
spectral consistency, which is expressed as RX = YS from
(2) and (3), is important in practical use.

HS and MS data fusion algorithms in remote sensing have
mainly been evaluated using synthetic datasets or real datasets
taken from different platforms [5]. In this work, we present an
airborne experiment on unmixing-based hyperspectral super-
resolution to examine the restoration of pure spectra using
ground measurements and show its impact on target detec-
tion. An extended CNMF is introduced to deal with a chal-
lenging problem setting: only three channels for MS data and
a 10-fold GSD difference.

2. MATERIALS AND METHODS

2.1. Image Acquisition and Preprocessing

Airborne observation was conducted using HS and RGB
cameras mounted on a small aircraft. The HS camera is a
HyperSpec-VNIR-C (Headwall Photonics Inc.), which cap-
tures 128 bands in the 390–1040 nm spectral range by push-
broom imaging. The 400–800 nm spectral region was used
because the remaining wavelength ranges have low accuracy
of reflectance conversion. The RGB camera is an EOS 5D
Mark II (Canon Inc.). The altitude was approximately 1000
m and the GSDs of the HS and RGB images are 2.5 and
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Fig. 1. Color images of study area obtained by (left) HS and (right) RGB cameras.
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Fig. 2. Improved initialization of high-spatial-resolution abundance map.

0.25 m, respectively, after geometric projection. The dataset
was acquired over the University of Tokyo campus and the
neighboring urban area. Fig. 1 shows color images of part of
the study area obtained using HS and RGB cameras. We set
two green plastic sheets as targets to be detected on a roof of
the building where is covered by gravel.

To ensure spatial and spectral consistency between HS
and RGB images, the preprocessing is important: (i) Smile
and keystone are modified using an image-matching technique
[6]. (ii) Geometric projection is applied to two datasets and
the HS image is registered to the RGB image to mitigate ge-
ometric errors caused by the difference in scanning type, i.e.,
line and area scanning. The relative spatial response func-
tion (S) can be approximated by a Gaussian filter. (iii) The
HS image is converted to a reflectance image using ground-
measured spectra. A bright homogeneous walkway was used
as the reference area. (iv) The estimation of relative spec-
tral response functions (SRFs) can be formulated as a con-
strained least-squares problem [?]. Reflectance conversion
coefficients of the RGB image are simultaneously obtained.
(v) The RGB image is converted to reflectance using the co-
efficients.

2.2. Extended CNMF

After the preprocessing, the high-spatial-resolution HS data
is obtained by extended CNMF. Since the difference in GSDs
is 10-fold and only three spectral channels are available for
higher-spatial-resolution information, the unmixing of the
RGB image is a severely ill-posed problem. To tackle this
challenging problem, we improve the initialization of the
abundance matrix (A) in the unmixing of the RGB image.

CNMF starts with NMF-based unmixing of the HS data
to estimate the endmember (E) and abundance (Ah) matrices
using its spectral advantage. NMF converges to local minima;
therefore, the initialization is important. The vertex compo-
nent analysis (VCA) [8] and fully constrained least-squares
(FCLS) [9] methods are used for the initialization of E and
Ah, respectively.

Next, the RGB image is unmixed by NMF after initializ-
ing the endmember (Em) and abundance (A) matrices using
E and Ah. The relative SRFs (R) are used for initializing
Em. In the ordinary CNMF, A is initialized as interpolated
abundance maps calculated from Ah, which is not suitable for
the 10-fold GSD difference. In this work, we introduce seg-
mentation for better initialization of A, as shown in Fig. 2.
The interpolated abundance maps are converted to segmented
abundance maps by integrating region-unifying segmentation
of the RGB image with the interpolated abundance maps. The
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Fig. 3. 719 nm band images of (left) HS and (right) fused data. Subimages A and C show tree crowns and B shows the plastic
sheet.

average abundance value of a segment is assigned to all pix-
els in the segment. Finally, a blurred version of segmented
abundances is used for initializing A. In addition, we update
only A in RGB unmixing to avoid the incorrect convergence
of Em owing to the small number of spectral bands.

The sequential unmixing for HS data is processed after
initializing the abundance by Ah = AS. After that, two
datasets are alternately unmixed until convergence and the
fused data is obtained by multiplying the endmember matrix
by the high-spatial-resolution abundance matrix.

2.3. Target Detection

To examine the effectiveness of unmixing-based HS super-
resolution for practical applications, we use the fused data
for target detection. Our target is the green plastic sheet and
its spectrum is obtained by ground measurements using an
USB2000+VIS-NIR (Ocean Optics Inc.). We adopt a sub-
pixel target detection method based on linear spectral unmix-
ing named nonnegatively constrained least squares (NCLS)
[10]: 1) The target spectrum is set as the first endmember
E = [e0]. Let k = 0 and select ϵ to be a prescribed error
threshold. 2) Let k ← k + 1 and the abundance fractions
are estimated with the endmember matrix E = [e0...ek−1] by
solving the NCLS problem:

min
a

1

2
∥z−Ea∥22 subject to a ≽ 0, (4)

3) Check the least squares error if ∥z−Ea∥22 < ϵ for all z. If
it is, the algorithm stops, otherwise continue. 4) Find a new
endmember as

ek = argmax
z
∥z−Ea∥22 (5)

3. EXPERIMENTAL RESULTS

We produced the 0.25-m-GSD HS data with 97 bands over the
400–800 nm spectral region by applying the extended CNMF
to the HS and RGB images. Fig. 3 shows 719-nm-band im-
ages of low-spatial-resolution HS and fused data. As shown
in the enlarged images in Fig. 3, tree crowns and the green
plastic sheet spread on the roof are identifiable with the fused
data owing to the 10-fold improvement of GSD.

To evaluate the spectral reconstruction of the fused data,
we examine the spectral profile of the green plastic sheet
shown in Fig. 3. The left graph in Fig. 4 shows the spectra
of the green plastic sheet for low-spatial-resolution HS and
for CNMF and extended-CNMF data as well as the ground-
measured spectra of the green plastic sheet and the surround-
ing gravel. The spectrum of the low-spatial-resolution HS
data appears to be a mixture of the two ground-measured
spectra because of mixed pixels. In contrast, the peak around
the green region is restored for the extended-CNMF data,
whereas the CNMF spectrum contains artificial errors. This
result indicates that the segmentation-integrated initialization
of higher-spatial-resolution abundance maps contributes to a
better convergence of the RGB-image unmixing, which en-
ables the restoration of pure spectra. The difference between
the extended-CNMF and ground-measured spectra may be
caused by errors in the preprocessing or in the ground mea-
surements.

Next, we applied the NCLS subpixel target detection to
HS, MS, CNMF, and extended-CNMF datasets and the target
abundances are shown at the right images of Fig. 4. The abun-
dances at the green plastic sheets obtained by the extended-
CNMF data show higher values compared to those of the
other data. The clearer abundance contrast between the tar-
get objects and backgrounds is expected to contribute to bet-
ter target detection. Surprisingly, the abundances of the target
objects obtained by the CNMF data show lower values com-
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Fig. 4. (Left) Spectral validation of fused data using ground-measured spectra. Right images show abundance maps of green
plastic sheet for HS, MS, CNMF, and extended CNMF data with two peak values.

pared to the HS and MS data because of spectral errors. It sug-
gests that the careful preprocessing and the extended-CNMF
are effective in practical use with challenging optimization
conditions.

4. CONCLUSION

In this work, we presented an airborne experiment of unmixing-
based HS super-resolution using an RGB image to examine
the restoration of pure spectra and its effect on target de-
tection. We introduced segmentation to the initialization of
higher-spatial-resolution abundance maps in CNMF to deal
with a severe ill-posed problem due to the 10-fold GSD dif-
ference and lack of higher-spatial-resolution near-infrared
image in the MS data. The extended CNMF method not only
improved the spatial resolution but also restored pure spectra,
which contributes to accurate target detection.
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