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ABSTRACT

A new methodology that solves unmixing problems involving
a set of multisensor time-series spectral images is proposed
in order to understand dynamic changes of the surface at a
subpixel scale. The proposed methodology couples multiple
unmixing problems via regularization on graphs between the
multisensor time-series data to obtain robust and stable un-
mixing solutions beyond data modalities owing to different
sensor characteristics and the effects of non-optimal atmo-
spheric correction. A synthetic dataset that includes seasonal
and trend changes on the surface and the residuals of non-
optimal atmospheric correction is used for numerical valida-
tion. Experimental results demonstrate the effectiveness of
the proposed methodology.

Index Terms— Coupled spectral unmixing, multisensor
data fusion, time-series analysis, change detection

1. INTRODUCTION

A synergetic use of hyperspectral and multispectral images
is important for upcoming spaceborne imaging spectroscopy
missions [1]. Spaceborne imaging spectroscopy enables mon-
itoring dynamic processes of the surface in detail on a global
scale; however, revisit time is limited compared to multispec-
tral imaging satellites. Understanding of the dynamics on the
surface can be improved by synergistically analyzing a time
series of spaceborne hyperspectral and multispectral images.

In recent years, particular attention has been paid to spec-
tral unmixing of multitemporal hyperspectral data owing to its
ability to detect class-specific changes at a subpixel level [2]–
[11]. Previous research has shown the effectiveness of multi-
temporal spectral unmixing in a wide range of applications
[2]–[6]. Current research is focused on applying spectral-
library-based unmixing methods to multitemporal unmixing
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problems [5, 9]. A data-driven approach has also been devel-
oped in [10, 11].

To the authors’ knowledge, very few publications can be
found in the literature that investigate time-series spectral un-
mixing from the viewpoint of synergistically exploiting hy-
perspectral and multispectral images. Hyperspectral and mul-
tispectral image fusion has received great attention to gener-
ate high-resolution hyperspectral data [12]; however, studies
on time-series analysis are still lacking. To tackle spectral
unmixing of a multisensor time series, it is challenging to de-
termine how to use hyperspectral and multispectral images in
complementary fashion. Furthermore, most of the previous
studies on multitemporal hyperspectral unmixing do not take
into account possible data mismatches due to non-optimal at-
mospheric correction, even though it always appears in time-
series spectral data [13]–[15].

In this paper, a novel methodology for spectral unmixing
of multisensor time-series data is proposed. The objective is
to understand dynamic changes on the surface at a subpixel
scale from multisensor time-series data, beyond data modal-
ities, due to different sensor characteristics and the effects of
non-optimal atmospheric correction. Each spectral unmixing
problem is solved cooperatively with those related to other
images that have similar surface conditions to obtain a robust,
stable, and accurate solution. Multiple unmixing problems
are coupled via regularization on graphs between neighbor-
hood images.

The remainder of the paper is organized as follows: Sec-
tion II introduces our methodology. Experimental results on
synthetic data are presented in Sections III. Section IV con-
cludes the paper.

2. METHODOLOGY

To obtain robust and stable unmixing beyond data modalities
due to different spectral characteristics and non-optimal atmo-
spheric correction, we introduce coupled spectral unmixing
for time-series analysis of multisensor spectral data, which
solves an unmixing problem of a single image cooperatively
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Fig. 1. Manifold of multisensor time-series spectral data

with those of its neighboring images (in the time-series hi-
erarchy) by adopting an intrinsic manifold of the time-series
dataset. Fig. 1 illustrates the manifold of multisensor time-
series spectral data. Each point represents a single image.
Owing to changes on the surface, the multisensor time-series
dataset forms the manifold, where neighborhood images have
similar conditions of the surface. Coupled spectral unmixing
of multisensor time-series data is formulated as a decen-
tralized optimization problem for multi-agent systems [16],
where each spectral unmixing is solved via a local optimiza-
tion problem based only on information concerning other
spectral unmixing problems in its neighborhood.

The multiple spectral unmixing problems are coupled via
regularization on local graphs. In a local graph, a target im-
age and its neighbors are regarded as nodes and connected by
edges. Local graphs can be mixtures between undirected and
directed graphs, depending on the difference in the spectral
resolution between the two images. Undirected graphs are
used between images with similar spectral resolution so that
local spectral unmixing problems mutually influence each
other. Hyperspectral imaging enables more accurate spectral
unmixing than multispectral imaging. If the target image is a
multispectral data set, hyperspectral neighboring images can
improve the accuracy of the spectral unmixing for the target
image; however, the reverse is not necessarily the case. There-
fore, directed graphs, where the edges have a direction from
higher-spectral-resolution data to lower-spectral-resolution
data in the manifold, are also considered (Fig. 1).

Let us consider K + 1 images {Yk ∈ RBk×P }K+1
k=1 , i.e.,

a target image and its K-nearest neighbors. The numbers of
spectral bands satisfy B1 ≤ B2 ≤ ... ≤ BK+1 without loss
of generality. For each spectral unmixing, L1/2 sparsity reg-
ularization on abundances is adopted []. It is supposed that
the spectral signature matrix is obtained either from a spec-
tral library or from the data itself. The optimization problem

of coupled spectral unmixing can be formulated as
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T , Xk ∈ RP×M denotes the
abundance matrix of the kth data (Yk). The penalty term
with the parameter α is the graph regularization, which places
the restriction such that, if two spectral signatures are similar,
the abundance vectors are also similar to each other. Wpq ∈
RPp×Pq is the weight matrix on the graph between the pth
and qth data, and (Wpq)jl represents the closeness of two
points: the jth column of Yp and the lth column of Yq . Wpq

is designated by the spectral similarity measurement using a
distance metric, such as the Euclidean distance or spectral an-
gle distance (SAD). G ∈ RK+1×K+1 is the adjacency ma-
trix that represents the local graph between K + 1 images.
Gpq = Gqp = 1 if the pth and qth images are connected by
the undirected edge, whereas Gpq = 0 and Gqp = 1 if they
are connected by the directed edge from the qth image to the
pth image. Z = [ZT1 , ...,Z

T
K+1]

T is auxiliary variables that
implement the directed-graph regularization.

The formula in (1) can be solved by alternating optimiza-
tion after the initialization of X and Z using a conventional
method for individual spectral unmixing, such as the con-
strained least squares (CLS) method [17]. The alternating
update rules (2)–(4) are obtained by the augmented Lagrange
method. Θk � 0 denotes the augmented Lagrangian param-
eters. Dpq1 ∈ RPq×Pq and Dpq2 ∈ RPp×Pp denote diagonal
matrices whose entries are column and row sums of Wpq ,
respectively. The simplest way to construct Wpq is to cal-
culate the spectral similarity between only a pair of spatially
corresponding pixels. In this case, Wpq = Dpq1 = Dpq2 if
Pp = Pq is satisfied. We use this technique to save computa-
tional costs. The average of non-zero elements in W is used
to find the K-nearest neighbors and construct G, which is re-
ferred to as manifold-based coupling. An alternative means of
constructing G is the use of sequential coupling that uses tem-
porally neighboring images. Note that the problem (1) does
not include the abundance sum-to-one constraint. To satisfy
the abundance sum-to-one constraint, a method given in [17]
is adopted.

The proposed algorithm is summarized in Algorithm 1.
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Algorithm 1 Graph-regularized coupled spectral unmixing
for multisensor time-series data
Input: Y, A
Output: X

1: for i = 1 to N do
2: calculate W between all combinations between Yi

and the others
3: find K nearest neighbors of Yi

4: prepare G
5: initialize {Xk}k∈Vi by individual spectral unmixing

(Vi is a set of the ith target and K neighbor images)
6: solve (1) by alternating updates of (2)–(4)
7: update {Xi}
8: end for
9: return {Xi}Ni=1

3. EXPERIMENT

3.1. Synthetic multisensor time-series spectral images

A set of synthetic multisensor time-series spectral images was
used to numerically validate the proposed methodology. The
synthetic dataset was simulated using the abundance maps of
the Fractal 1 synthetic data [18]. The Fractal 1 image is com-
posed of nine endmembers; their abundance maps were gen-
erated from fractal patterns with the size of 100× 100 pixels.
To simulate realistic changes on the surface, seasonal changes
and trend changes were considered. Nine endmembers were
selected from the U.S. Geological Survey (USGS) spectral
library: grass, dry grass, oak, soil, melting snow, water, as-
phalt, green house, and concrete. Seasonal changes were sim-
ulated for grass, dry grass, oak, soil, and melting snow using
periodic functions, and trend changes are simulated for green
house, and concrete using a monotonic increasing function.

The spectral response functions of AVIRIS (bands 1–32,
36–96, 100–160, and 163–224) and Landsat-8 (bands 1–8)
were used to simulate hyperspectral and multispectral images,
respectively. Additive Gaussian noise with a signal-to-noise
ratio (SNR) of 100 was added to each temporal image. Non-
optimal atmospheric correction was simulated using a Gaus-
sian random vector for the residual gains. The revisit cycles of
the hyperspectral and multispectral imagers were set to 16 and
27 days, respectively, which correspond to those of Landsat-8
and EnMAP. Two scenarios are considered for data acquisi-

tion: 1) full acquisition, that assumes a clear sky for all im-
ages, and 2) realistic acquisition, that assumes a clear sky for
30% of the observations. The total observation period is set to
five years and therefore the total number of images is 68 and
115 for hyperspectral and multispectral images, respectively.
Composite color images of five examples are shown in Fig.
2(a). The corresponding reference abundances of grass and
concrete are presented in the first row images of Fig. 2(b)(c).

3.2. Experimental results

We use three methods: 1) individual spectral unmixing (ISU)
based on the CLS method; 2) coupled spectral unmixing with
sequential coupling (CSU 1); and 3) coupled spectral unmix-
ing with manifold-based coupling (CSU 2). To investigate
the efficacy of using multiple sensors, these methods are per-
formed on three different datasets: 1) only hyperspectral im-
ages; 2) only multispectral images; and 3) hyperspectral and
multispectral images. A is given, K = 2, and α = 1.

Table 1 shows the average root-mean-square errors (RM-
SEs) of abundances, defined by 1

N

∑N
i=1 ‖Xi − X̃i‖F . For

the realistic data acquisition scenario, the average results of
10 Monte Carlo trials obtained after selecting 30% of the
observations are shown. Note that only the unmixing accu-
racy of multispectral images is shown for the third dataset,
because only multispectral images can gain benefits, whereas
the results of hyperspectral images are the same as for the
first dataset. The coupled spectral unmixing algorithms out-
perform individual spectral unmixing for the first and third
datasets. The unmixing accuracy of multispectral data is
highly improved owing to the support of neighboring hy-
perspectral images. Coupled spectral unmixing based on
manifold-based coupling outperforms that based on sequen-
tial coupling in many cases, particularly in the realistic data
acquisition scenarios. This suggests that manifold-based
coupling leads to more accurate and robust unmixing re-
sults than sequential coupling. Coupled spectral unmixing
with sequential coupling performs well in ideal scenarios
because sequential neighbors with high temporal resolution
represent neighbors in the manifold of time-series data well.
In contrast, if data acquisition is limited to realistic scenar-
ios, manifold-based coupling is required because sequential
neighbors do not always represent neighbors in the manifold.

Figs. 2(b)(c) present reference abundance maps of grass
and concrete for the five examples of the third dataset with



Table 1. Average RMSEs of abundances obtained before atmospheric normalization from three datasets of synthetic time-series
spectral images, i.e. only hyperspectral (HS) data (68 images), only multispectral (MS) data (115 images), and both HS and
MS data (183 images) using ISU, CSU 1, and CSU 2. RMSEs for only MS data are shown for the last dataset.

Dataset HS MS MS (coupled with HS)
Acquisition Ideal Realistic Ideal Realistic Ideal Realistic

ISU 0.028181 0.028526 0.11484 0.11719 0.11484 0.11719
CSU 1 0.025268 0.026195 0.1161 0.12110 0.086309 0.092507
CSU 2 0.025552 0.025896 0.11538 0.11840 0.049207 0.052016
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Fig. 2. (a) Color composites of ten images in the synthetic dataset and their corresponding abundance maps of (b) grass and
(c) concrete. Abundances of reference and estimated abundances obtained by ISU, CSU 1, and CSU 2 are shown from top to
bottom in (b) and (c).

one trial of the realistic acquisition scenario and the corre-
sponding estimated abundance maps obtained by the three
methods. Serial day numbers of the subset are 433, 1009,
1313, 1473, and 1825, which are all simulated as observed by
the multispectral imager. In Fig. 2(b), the coupled spectral
unmixing methods shows better resemblance to the reference
compared to individual spectral unmixing. In particular, CSU
2 exhibits the best results. On the other hand, in Fig. 2(c),
CSU 1 shows the best resemblance, whereas both CSU 1 and
CSU 2 outperform individual spectral unmixing. These re-
sults imply that manifold-based coupling better captures sea-
sonal changes and sequential coupling is more suitable for
detection of trend changes.

4. CONCLUSIONS

A coupled spectral unmixing methodology was proposed for
multisensor time-series analysis. The proposed methodol-
ogy provides robust and stable unmixing solutions beyond

data modalities due to the different spectral characteristics
of imagers and the effects of non-optimal atmospheric cor-
rection. A single unmixing problem is cooperatively solved
with other unmixing problems in its neighborhood in the man-
ifold of the time-series dataset. Multiple unmixing problems
are coupled via regularization on graphs between the local
images. Numerical validation was performed with synthetic
time-series data composed of hyperspectral and multispectral
images, including trend and seasonal changes on the surface
and residual gains simulating non-optimal atmospheric cor-
rection. The experiment demonstrated the effectiveness of the
coupled spectral unmixing algorithm compared to individual
spectral unmixing. A generalization of the proposed method-
ology and its application to real data is noteworthy [19].
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