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ABSTRACT
Classification of tree species is one of the most important applications in remote sensing.

In this study, the authors propose a methodology to classify tree species using hyperspectral and
LiDAR data. The method consists of shadow correction, individual tree crown delineation and
classification by support vector machine (SVM). Shadows in hyperspectral data are modified by
unmixing. Individual tree crown delineation is achieved by a local maxima and region growing
method for a LiDAR derived canopy height model (CHM). The input variables of SVM classifiers
are principal components of hyperspectral data and the canopy form (height and size). The authors
applied this method to the hyperspectral and LiDAR dataset taken over Tama Forest Science Garden
in Tokyo and classified the data into 19 classes. As a result, we achived classification accuracy of
68 %, which is 20 % higher than what is obtained by using hyperspectral data only.
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1 INTRODUCTION
Tree species classification is an important issue on the study of land cover or forest management.

Periodic field surveys by experts, however, cost a large amount of time and human resources. Remote
sensing by satellites can observe wide area at one time and provides time series data. For the past
several decades, many researchers have performed classification or identification of tree species.
Since hyperspectral sensors have hundreds of observation bands and high spectral resolution, we
can obtain a continuous spectrum that enables more detailed analysis. In addition to spectral data,
light detection and ranging (LiDAR) data is very informative. In recent years, fusion of these two
data for classification has been studied (Dalponte 2008). In this study, we propose a methodology
to classify tree species using hyperspectral and LiDAR data. We apply the method to forest data
and show that it works well.

2 STUDY AREA
The study area is Tama Forest Science Garden in Tokyo in Japan. The hyperspectral and

LiDAR data are provided by ERSDAC (Japan Space Systems now). The hyperspectral data are
taken by CASI-3 sensor on 10 September, 2009. The observation wavelength range is 400-1050 nm
with 72 bands and the spatial resolution is 1 m. The spatial resolution of LiDAR data is 0.5 m. To
unify the resolution of the both data, LiDAR data was downsampled. Canopy height model (CHM)
is the difference of digital elevation model (DEM) and digital surface model (DSM), and represents
the height of trees excluding terrain effect. Figure 1 shows the RGB and CHM images. with the
size of 268×207 pixels. Field survey has been conducted in this area and the species and the crown
shapes of some trees are known (Odagawa and Okada 2009). There are more than 90 species of
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Figure 1: Study area
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Figure 2: Ground truth

trees in this area. However, many species occupy few pixels. We chose 19 species that have enough
ground truth data. Figure 2 shows the distribution map of the ground truth and Table 1 shows the
class names and the number of samples.

3 METHODOLOGY
The proposed method consists of three parts: (1) shadow correction, (2) individual tree crown

delineation, and (3) classification by support vector machine (SVM). First, we modify shadows
in hyperspectral data by unmixing. Next, we delineate individual tree crown in order to use the
morphological information of trees. Finally, we classify the data by SVM classifiers. Figure 3 shows
the classification flow.
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Figure 3: Classification flow



Table 1: Class names and the number of samples
Class English name Scientific name Samples

1 California incense cedar Calocedrus decurrens 362

2 Deodar cedar Cedrus deodara 749

3 Japanese ceder Cryptomeria japonica 3053

4 Bald cypress Taxodium distichum 875

5 Japanese cypress Chamaecyparis obtusa 721

6 Momi fir Abies firma 256

7 Eastern white pine Pinus strobus 551

8 American sweetgum Liquidambar styraciflua 723

9 Japanese bigleaf magnolia Magnolia obovata 308

10 Painted maple Acer pictum 359

11 Mulberry Morus bombycis 285

12 Oriental raisin tree Hovenia dulcis 347

13 Oshima cherry Cerasus speciosa 478

14 Japanese hop-hornbeam Ostrya japonica 270

15 Japanese cherry birch Betula grossa 297

16 Chinese cork oak Quercus variabilis 297

17 Chinese evergreen oak Quercus myrsinifolia 876

18 Japanese blue oak Quercus glauca 991

19 A species of oak Quercus serrata 959

3.1 SHADOW CORRECTION
There are many shadows in forest. They affect classification results. Therefore, shadows in

hyperspectral data need to be modified for accurate classification. We used the standard unmixing-
based approach for de-shadowing of reflectance data (Boardman 1993). The shadow is defined as a
“black” (zero reflectance) endmember and added to endmember spectra detected by the vertex com-
ponent analysis (VCA). Abundance fractions are estimated using the fully constrained least squares
method (FCLS) satisfying sum-to-one and non-negativity constraints. The reflectance spectrum is
approximately de-shadowed by dividing by (1−Shadow abundance fraction). Figure 4(a) shows the
de-shadowed image of the study area.

3.2 INDIVIDUAL TREE CROWN DELINEATION
Individual tree crown delineation is one of the important techniques to extract information

of forests. Many researchers have investigated individual tree crown delineation methods (Erikson
and Olofsson 2005). Pollock (1996) developed template matching method and Erikson (2003, 2004)
developed region growing method. In this study, we used a simple method based on region growing
method for LiDAR derived CHM (Koch et al. 2006). First, to reduce noise, we apply Gaussian
smoothing filter to the CHM. The window size is 3×3. Then, we find local maxima of the smoothed
image. They include non tree objects. Thus the local maxima whose normalized difference vegeta-
tion indices (NDVI) are lower than 0.8 or heights are lower than 3 m are excluded. The rest of them
correspond to the tops of trees. Regions corresponding tree crowns grow from the local maxima
according to region growing rules. If the neighboring pixels satisfy some conditions, regions grow
and the neighboring pixel become the next starting pixel. The conditions are set that the height
of neighboring pixel is higher than 1 m and lower than that of the starting pixel so that regions do
not expand to the ground. This growing step is repeated until there is no starting pixel. After the
growing step, overlapped regions are assigned to the region of the nearest local maximum. Figure
4(b) shows the result of individual tree crown delineation of the forest data. The colors are assigned
at random and the red dots represent the tops of trees.



(a) De-shadowed RGB image (b) Individual tree crown delineation

Figure 4: Preprocessed image

3.3 CLASSIFICATION BY SVM
We classify data by kernelized SVM classifiers that are nonlinear classifiers. The input variables

of SVM are 15 principal components of the modified hyperspectral data and the morphological data,
namely, the canopy heights and sizes. The heights and the sizes are the highest values of CHM
and the number of pixels in each crown respectively. If a pixel is not included in any crowns, the
height is its own value and the size is 1. The kernel function is radial basis function (RBF) kernel

k(x1, x2) = exp(− |x1−x2|
σ ). The bandwidth σ is decided by cross-validation. We coded this method

in MATLAB and LIBSVM, which is the library for support vector machine (Chang and Lin 2011).
It supports multi-class classification using one-against-one method.

4 EXPERIMENTAL RESULT
We applied our method to the forest data. The training set, whose size is given as a percentage

to all ground truth, was selected at random but common to compared methods in one test. Figure 5
shows the classification map when the training set size is 10 %. It is compared with the method using
original hyperspectral data only. Black regions, where heights are lower than 1 m and NDVI are
lower than 0.7, are thought to be not trees. Our method improves the result of the central area, most
of which are misclassified into Japanese blue oak and a species of oak by hyperspectral-only method.
Table 2 shows the confusion matrix at the test. Most of the samples are classified into Japanese
incense ceder, Japanese blue oak, and a species of oak, and few samples are classified into California
incense ceder, Momi fir, Eastern white pine, Japanese hop-hornbeam, and Japanese cherry birch by
hyperspectral-only method. In contrast, our method can classify the samples well. This result shows
that the morphological information is useful for tree species classification. Nevertheless, species of
oak (17, 18, 19) tend to be confound with one other. One reason for the high accuracy of Japanese
incense ceder and the low accuracy of California incense ceder, Momi fir, Japanese bigleaf magnolia
and Japanese hop-hornbeam is thought to be the difference of the number of samples. Figure 6
shows the average of the accuracy of each class in multiple tests. The accuracy of our method is
higher than hyperspectral-only in most of the classes. The overall accuracy is shown in Figure 7,
where the training set size were changed from 1 % to 20 %. It is compared with three methods,
which are using original hyperspectral data only, using shadow corrected (SC) hyperspectral data
only, and using SC hyperspectral and raw CHM data. It shows that the shadow correction increases
the accuracy by 4 %, and that the accuracy of our method is 16 % higher than the method using
hyperspectral data only. Additionally, our method shows higher performance than the method using
hyperspectral and raw CHM data.
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Figure 5: Classification map
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Table 2: Confusion matrix
(a) Hyperspectral-only method

Name Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Accuracy

California incense cedar 1 4 4 260 19 30 0 0 22 0 0 0 10 0 0 0 0 6 7 0 1.10

Deodar cedar 2 0 211 507 14 11 0 0 0 0 0 0 0 0 0 0 0 3 3 0 28.17

Japanese ceder 3 3 84 2777 45 40 0 0 15 5 3 0 10 7 0 0 0 18 37 9 90.96

Bald cypress 4 0 12 299 412 37 0 0 10 0 0 0 17 0 0 0 0 36 48 4 47.09

Japanese cypress 5 0 5 415 27 194 0 0 1 0 0 1 13 0 0 0 0 23 19 23 26.91

Momi fir 6 0 0 162 9 9 0 0 8 0 0 0 7 0 0 0 0 17 29 15 0.00

Eastern white pine 7 0 12 358 94 52 0 0 0 1 0 0 16 0 0 0 0 4 13 1 0.00

American sweetgum 8 0 0 96 28 0 0 0 494 0 0 0 1 0 0 0 2 64 32 6 68.33

Japanese bigleaf magnolia 9 0 0 85 4 11 0 0 4 31 4 0 38 2 0 0 0 39 68 22 10.06

Painted maple 10 0 2 43 5 48 0 0 0 10 16 3 16 8 0 0 0 18 166 24 4.46

Mulberry 11 0 4 37 7 4 0 0 2 8 0 16 12 11 0 0 0 20 155 9 5.61

Oriental raisin tree 12 0 2 38 12 19 0 0 0 6 0 0 68 0 0 0 0 42 111 49 19.60

Oshima cherry 13 0 0 93 9 5 0 0 17 16 0 0 48 30 0 0 6 59 117 78 6.28

Japanese hop-hornbeam 14 0 0 26 4 6 0 0 0 1 2 0 3 0 0 0 0 28 148 52 0.00

Japanese cherry birch 15 0 2 67 16 2 0 0 8 5 0 0 31 0 0 0 4 13 103 46 0.00

Chinese cork oak 16 0 0 14 6 0 0 0 16 0 0 0 1 7 0 0 65 31 122 35 21.89

Chinese evergreen oak 17 0 0 89 36 7 0 0 61 6 0 0 32 4 0 0 5 156 331 149 17.81

Japanese blue oak 18 0 0 134 39 9 0 0 67 2 2 1 48 1 0 0 9 154 404 121 40.77

A species of oak 19 0 0 138 26 0 0 0 26 9 0 0 57 8 0 0 5 145 354 191 19.92

(b) Proposed method

Name Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Accuracy

California incense cedar 1 61 8 144 0 45 0 31 23 3 0 0 7 0 0 36 0 0 0 4 16.85

Deodar cedar 2 1 473 221 4 8 0 26 0 1 0 1 0 0 0 1 0 2 3 8 63.15

Japanese ceder 3 13 77 2661 64 88 3 22 10 12 0 6 16 3 1 0 5 8 24 40 87.16

Bald cypress 4 0 14 69 640 59 7 6 2 13 0 0 0 1 9 2 3 25 22 3 73.14

Japanese cypress 5 9 21 177 8 377 5 23 0 0 0 2 10 5 7 34 5 6 21 11 52.29

Momi fir 6 11 2 12 4 11 89 0 2 1 1 2 0 12 0 11 0 15 58 25 34.77

Eastern white pine 7 15 55 76 0 32 0 324 1 5 2 0 7 2 2 5 4 17 3 1 58.80

American sweetgum 8 1 2 23 0 1 0 7 594 1 0 0 0 0 1 1 33 32 18 9 82.16

Japanese bigleaf magnolia 9 10 0 39 8 7 0 12 2 86 3 5 1 0 23 38 17 21 10 26 27.92

Painted maple 10 0 7 7 7 17 4 13 5 5 144 0 0 4 25 9 20 33 36 23 40.11

Mulberry 11 1 0 25 0 4 0 2 0 4 5 159 3 0 4 25 10 10 31 2 55.79

Oriental raisin tree 12 3 1 12 0 1 0 3 0 8 0 0 284 3 0 4 0 1 25 2 81.84

Oshima cherry 13 0 2 62 0 24 0 4 2 0 5 3 13 151 0 0 0 26 156 30 31.59

Japanese hop-hornbeam 14 1 0 8 5 1 2 6 0 12 18 2 5 0 54 19 28 73 31 5 20.00

Japanese cherry birch 15 23 5 9 3 2 0 13 4 11 0 0 9 0 5 152 47 13 1 0 51.18

Chinese cork oak 16 0 0 0 4 0 0 2 11 2 0 0 16 0 7 8 227 20 0 0 76.43

Chinese evergreen oak 17 6 0 44 6 7 0 10 60 13 0 2 1 38 3 26 36 392 156 76 44.75

Japanese blue oak 18 2 0 75 37 31 7 2 36 3 1 15 11 34 3 4 5 108 469 148 47.33

A species of oak 19 4 0 13 0 2 1 0 20 11 2 3 25 41 2 8 6 73 174 574 59.85



5 CONCLUSION
We proposed the novel methodology to classify tree species using hyperspectral and LiDAR

data. The method uses spectral information derived from shadow corrected hyperspectral data and
morphological information derived from LiDAR data. We applied it to the data taken over Tama
Forest Science Garden in Tokyo in Japan. It was showed that shadow correction improved the
classification result and our method had higher performance than the methods using hyperspectral
data only or using hyperspectral and raw CHM data. Although hyperspectral data have a number of
spectral information, it is thought to be difficult to classify tree species in detail using hyperspectral
data only. Adding morphological information derived from LiDAR data led to the improvement.
Using more suitable individual tree crown delineation method and introduction of parameters that
represent more detailed shapes of trees will improve the performance. Additionally, the delineation
have not been validated. They are future works.
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