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ABSTRACT 
 
Classification of tree species is one of the most important 
applications in remote sensing. A methodology to classify 
tree species using hyperspectral and LiDAR data is 
proposed. The data processing consists of shadow 
correction, individual tree crown delineation, classification 
by support vector machine (SVM) and postprocessing by a 
smoothing filter. The authors applied this procedure to the 
data taken over Tama Forest Science Garden in Tokyo, 
Japan and classified it into 16 classes of tree species. As a 
result, the authors achieved classification accuracy of 79 % 
with 10 % training data, which is 17 % higher than what is 
obtained by using hyperspectral data only. Shadow 
correction and morphological processing derived from 
LiDAR data increase the accuracy by 3 % and 14 %, 
respectively. 
 

Index Terms— classification, forest, hyperspectral data, 
LiDAR, data fusion 
 

1. INTRODUCTION 
 
Tree species classification is an important issue on the study 
of land cover or forest management. Periodic field surveys 
by experts cost a large amount of time and human resources. 
Since remote sensing can provide wide area observation at 
one time, its contribution to tree species classification is 
expected. During the past years, many researches have 
worked on classification or identification of tree species. 
Since hyperspectral sensors have hundreds of observation 
bands and high spectral resolution, we can obtain a 
continuous spectrum that enables more detailed analysis. In 
addition to spectral data, light detection and ranging 
(LiDAR) data is very informative to obtain canopy height 
models (CHMs). In recent years, fusion of these two data 
for classification has been studied [1]. Many researchers 
used LiDAR data as preprocessing or raw height data. 
Morphological information, such as tree shape, obtained 
from LiDAR-derived CHMs is expected to be more useful. 
In this work, we propose a methodology to classify tree 
species by coupling hyperspectral and LiDAR data. In the 
methodology, we extract spectral and morphological 
information and input them to its classifiers. We apply the 
procedure to a challenging tree species classification 
problem and show its effectiveness. 

 Fig. 1. Study area 
 

 
Fig. 2. Ground truth 

 
2. STUDY AREA 

 
The study area is Tama Forest Science Garden in Tokyo, 
Japan. Fig.1 shows the RGB image derived from 
hyperspectral data and the CHM derived from LiDAR data. 
The CHM is the difference of the digital elevation model 
(DEM) and the digital surface model (DSM), which 
represents the height of trees excluding terrain effects. 
These data are taken by airborne sensors on 10 September, 
2009 and provided by Japan Space Systems. The ground 
sampling distance of the both data is 1 m. The observation 
wavelength of the hyperspectral sensor ranges 400 – 1050 
nm with 72 bands. Field survey has been carried out in this 
area tree by tree. Fig. 2 shows the distribution of the ground 
truth. The species and the crown shapes of some trees are 
investigated by experts. There are more than 90 species of 
trees in this area. However, most of species occupy few 
pixels. We choose major 16 species that have enough 
ground truth data. Tab. 1 shows the class names and the 
number of samples. This is the typical mixed forest of 
conifers and broad leaved trees. 

(a) RGB image (b) Canopy height model 



Tab. 1. Major class names 
 English name Scientific name Samples

1 California incense 
cedar Calocedrus decurrens 304

2 Bald cypress Taxodium distichum 927
3 Japanese cypress Chamaecyparis obtusa 875
4 Japanese ceder Cryptomeria japonica 3327
5 Deodar cedar Cedrus deodara 833
6 Loblolly pine Pinus taeda 332

7 Eastern white 
pine Pinus strobus 579

8 Koyama's spruce Picea koyamae 267
9 Momi fir Abies firma 282

10 American 
sweetgum Liquidambar styraciflua 733

11 Japanese bigleaf 
magnolia Magnolia obovata 380

12 Painted maple Acer pictum 403

13 Oriental raisin 
tree Hovenia dulcis 361

14 Chinese evergreen 
oak Quercus myrsinifolia 948

15 Japanese blue oak Quercus glauca 1083
16 A species of oak Quercus serrata 987

 
3. METHODOLOGY 

 
The proposed method consists of four parts: (1) shadow 
correction for hyperspectral data, (2) individual tree crown 
delineation from LiDAR-derived CHMs, (3) classification 
by support vector machine (SVM), and (4) postprocessing. 
Fig. 3 shows the classification flow. 
 
3.1. Shadow correction 
There are many shadows in forest, which affect 
classification results. Therefore, shadows in hyperspectral 
data need to be modified for accurate classification. We 
used the unmixing-based approach for de-shadowing of 
reflectance data [2]. First, the shadow is defined as a 
“black” (zero reflectance) endmember. Next, endmember 
spectra, which are thought to be non-shadowed, are selected 
by vertex component analysis (VCA). Abundance fractions 
are estimated using the fully constrained least squares 
(FCLS) method satisfying sum-to-one and non-negativity 
constraints. The reflectance spectra are approximately de-
shadowed by dividing the spectra by (1 – shadow 
abundance fraction). Fig. 4 (a) shows the de-shadowed 
image of the study area. 
 
3.2. Individual tree crown delineation 
Individual tree crown delineation is one of the important 
techniques to extract information of forest. Many 
researchers have investigated individual tree crown 
delineation methods [3]. We used a region growing method 

for LiDAR derived CHMs [4]. First, to reduce noise, we 
apply a Gaussian smoothing filter with the kernel size of 3 
pixels to the CHM, which is determined not to miss small 
trees. Then, we find local maxima of the smoothed image. 
They include non-tree objects. Thus the local maxima 
whose normalized difference vegetation indices (NDVI) are 
lower than 0.5 or heights are lower than 1 m are excluded. 
The rest of them correspond to the tops of trees. Regions 
corresponding tree crowns grow from the local maxima. If 
the neighboring pixels satisfy some conditions, regions 
grow and the neighboring pixels become the next starting 
pixels. The conditions are set that the height of the 
neighboring pixel is lower than that of the starting pixel and 
higher than 1 m so that regions do not expand to the ground. 
This growing step is repeated until there is no starting pixel. 
After the growing step, each region is adjusted to be star-
shaped, by which we exclude the pixels that locate out of 
the region centered by treetop [4]. Finally, overlapped 
regions are assigned to the region of the nearest local 
maxima. Fig. 4 (b) shows the result of the delineation. The 
red dots represent the tops of trees. 
 
3.3. Classification by SVM 
We classify data using SVM with the radial basis function 
(RBF) kernel to deal nonlinear distribution. The input data 
are spectral information and morphological information. 
The dimension of the hyperspectral data is 72 but the latent 

 
Fig. 3. Classification flow 

 

(a) De-shadowed RGB 
image 

(b) Individual tree crown 
delineation 

Fig.4. Preprocessed image. 



dimension is lower. Therefore, the spectral information is 
principal components of the modified hyperspectral data. 
We input 15 principal components that represent more than 
99.5 % of the whole data. Then, the canopy height, size and 
curvature are used for the morphological information. The 
height and the size are defined by the highest value of CHM 
and the number of pixels in each crown, respectively. The 
curvature is estimated by fitting function defined as 

, where we assume axial symmetry and use 
cylindrical coordinates (r, z). H denotes the height of the 
tree, and a and c are estimated values. If a pixel is not 
included in any crowns, the height is its own value, the size 
is 1 and the curvature is 0. The bandwidth is decided by 
cross-validation. We coded this method in MATLAB with 
LIBSVM, which is the library for support vector machine 
[5]. It supports multi-class classification using one-against-
one method. 
 
3.4. Postprocessing 
Since the spectra are different depending on the pixels even 
in the same crown, the classification map becomes noisy. 
We apply a crown-preserving smoothing filter as 
postprocessing. The filter is based on a Gaussian filter and 
weights depending on crowns segment. If filtered pixels 
belong to the same crown, the weight is 1. Otherwise, the 
weight is smaller than 1. Since the classification results are 
categorical values, we re-classify the data to the class in 
which score is highest after smoothing. 
 

4. RESULT 
 
We applied our method to the hyperspectral and LiDAR-
derived CHM taken over forest areas. The training set, 
whose size is given as a percentage to all ground truth, was 

randomly selected and commonly used for comparison 
methods in one test. Fig. 5 shows the classification map 
when the training set size is 10 %. Here, the classification 
accuracy is evaluated only in the regions with ground truth. 
The accuracy of the proposed method is better than that 
obtained by spectral information only. Since the proposed 
method uses morphological information, we can use 
information on crown segment, and thus less noisy result is 
achieved. Furthermore, the proposed method improves the 
result of the central area and Koyama’s spruce in the 
northeast area. Fig. 6 shows the accuracy of each class, 
which is obtained by averaging the result of multiple tests. 
The accuracy of the proposed method is higher than 
hyperspectral-only method in most of the classes. The 
overall accuracy is shown in Fig. 7, in which the training set 
size was changed from 1 % to 30 %. It is compared with 
three methods, i.e. original (non-modified) spectral 
information only, shadow corrected spectral information 
only, and original spectral and morphological information. 
It is found that shadow correction increases the accuracy by 
3 % and morphological information increases it by 14 %. 

 Fig. 8 shows the results of postprocessing including the 
region where ground truth data do not exist. It is compared 
with majority voting in each crown. The proposed filter can 
smooth results preserving smaller structures than majority 
voting. Moreover, applying the proposed filter multiple 
times can smooth results strongly preserving crown edges. 
Fig. 9 shows the overall accuracy with postprocessing. 
Majority voting makes the results worse on average. In 
contrast, the proposed filter improves the results. Applying 
the smoothing filter multiple times increases the accuracy. 
These results depend on the delineation but the proposed 
filter can preserve small structures even if the delineation is 
incomplete. This work shows that hyperspectral data with 
morphological information is effective for tree species 
classification in Japanese forests, in which conifers and 
broad leaved trees make complex biodiversity.  

 
(a) Hyperspectral-only 

 
(b) Proposed method 

  
(b) Ground truth 

 
 

Fig. 5. Classification map 

 
Fig. 6. Class accuracy 



 
Fig. 7. Overall accuracy 

 

 
(a) Before 

(Accuracy 79.53 %) 
(b) Majority voting 
(Accuracy 79.19 %) 

 
(c) Proposed filter (once) 

(Accuracy 80.47 %) 
(d) Proposed filter (multiple)

(Accuracy 81.97 %) 
Fig. 8. Classification map (postprocessing) 

 
5. CONCLUSION 

 
We proposed the methodology to classify tree species using 
hyperspectral data and LiDAR-derived CHMs. We applied 
it to the data taken over Tama Forest Science Garden in 
Tokyo, Japan and classified the data into 16 classes. The 
proposed method shows higher performance than the 
method using hyperspectral data only. It is found that 
shadow correction and morphological information are 
useful for tree species classification, showing the 
importance of height data. Furthermore, the crown-
preserving smoothing filter as postprocessing improves the 
classification results. 

 

 
Fig. 9. Overall accuracy (postprocessing) 
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