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ABSTRACT 

 

Monitoring and management of paddy fields are one of key 

elements for not only stable production but also ensuring 

national food security. Classification of growth stage with 

remote sensing data is expected to be a highly effective 

solution, which can capture large area in one time observation. 

In general cases, a pixel-based classification is one of the 

most attractive choices. However, acquiring enough number 

of field survey plots for the classification is not easy from the 

aspect of consumed time and cost. This problem can impact 

negatively on the accuracy of classification map. In this paper, 

we propose semisupervised classification method 

considering characteristic of paddy field in order to provide 

an optimal classification map with hyperspectral data. 

 

Index Terms— Hyperspectral, semisupervised 

classification, growth stage, sparse discrimination analysis, 

paddy 

 

1. INTRODUCTION 

 
Remote sensing in precision agriculture is one of strong 

support tools for crop monitoring and management. From 

stable production by individual farmers to national food 

security in government level, the accurate monitoring and 

management are very useful. Especially remote sensing data 

enables us to know the condition in large area in one time 

observation. There are many researches for monitoring crop 

conditions with multispectral data, which have limitations in 

providing accurate estimates. This limitation has motivated 

to use hyperspectral data for the crop monitoring. Hyper 

spectral data has rich spectral information which is strong 

tools for classification of land use, growth stage, etc. In the 

near future, some organizations plan to launch spaceborne 

hyperspectral sensors, such as HISUI by Japan Space 

Systems and EnMAP by DLR. 

Our main target of this study is to provide growth stage 

maps with high accurate classification performance, using 

hyperspectral data. In the past more than 20 years, there were 

many researches on crop monitoring using hyperspectral data 

[1]. Statistical techniques with hyperspectral data for 

agriculture might be classified in some categories; predictive 

spectral indices with only two to four narrow bands [2], 

chemometric analysis such as partial least squares, principal 

components analysis, etc., machine learning techniques [3] 

such as support vector machine, neural network, etc.  

Especially, this machine learning techniques provides good 

performance. However, accurate crop forecasting models 

need enough amounts of training samples. In many cases, 

there is a concern about the small-sample-size problem with 

high-dimensional data due to limitation of field samples. This 

problem can be caused of the complexity of prediction 

models, resulting in the poor performance caused by model 

overfitting. The importance of crop forecasting under the 

limitation of the training data are shown in the report of 

GEOSS [4]. In this study, we used the sparse regularization 

method which has high generalization capability and can 

select limited and important bands for classification in order 

to solve the ill-posed problem [5]. Moreover, focusing on the 

characteristics of reflectance in the paddy field, not only 

spatial information but also semisupervised classification 

techniques are used in our classification scheme for 

improving the performance.  

 

2. SURVEY AREA AND DATA SET 

 

The study area is located in Karawang which is well known 

as major granaries in West Java area. Dual and triple cropping 

of rice is common trend in these areas. Airborne 

hyperspectral data were acquired on 13th July 2011 and field 

survey for training data of classification in the study area was 

conducted on June to July 2011. The airborne hyperspectral 

sensor, HyMAP, has 126 bands (450nm - 2480nm) with 4.2 

m/pixel. All the field survey points are located in those 

captured remote sensing image. However, some survey plots 

locating under clouds in HyMAP images were eliminated in 

this study. Therefore, total number of survey plots used in this 

study is 78 quadrats.  Growth stage of each quadrat is 

classified in 9 classes, which is define by International Rice 

Research Institute (IRRI). Table 1 shows the details 



information about the defined growth stage. Since not enough 

number of quadrat in some growth stage such as vegetative 

early, reproductive mid, mature grain were obtained in the 

field survey, we focus on high accurate classification for 

remaining 6 classes. 

  

Table 1. Growth stage defined by IRRI 

 
 

3. METHODOLOGY 

 

Total processing scheme of this study is shown in Fig. 1. Our 

proposed methodology consists of four parts described in the 

following sections. 

 

 
Fig. 1. Processing scheme 

 

3.1. Preprocessing 

 

In order to convert radiance data to reflectance data 

considering atmospheric effects, atmospheric correction is 

applied to the obtained HyMAP data with ATCOR-4. 

Moreover, we select 86 bands of the corrected HyMAP data 

by eliminating 40 bands which are low S/N bands and 

absorption bands of O2, H2O and CO2.  

 

3.2. Pixelwise classification 

 

In this research, sparse linear discriminant analysis (SDA) [5], 

which is a classification method using sparse regularization 

technique, is applied to the hyperspectral data for the 

classification of growth stage. Sparse regularization has the 

generalization capability and can select limited and important 

bands for the classification during the process. In this study, 

we compare the generalization capability between SDA and 

SVM as a typical classification method. 

 

3.3. Post classification 

 

3.3.1. Segmentation of each paddy field 

In general, the growth stage is almost the same inside each 

segment. This can be confirmed from the results of field 

survey data. Therefore, the segmentation of each paddy field 

has an important role for classification, especially under the 

condition that the number of field survey plots is limited. In 

this study, we focus on the specific reflectance distribution of 

paddy field which consists of a square shaped flat reflectance 

region and a line shaped road. Spectral difference between 

these two elements is exist. In order to detect this spectral 

difference and the reflectance flatness of paddy field, high 

pass filter is adapted to the hyperspectral data. Furthermore, 

morphological opening with some typical squared disks sizes 

is used for keeping only the squared shaped objects similar to 

paddy field shapes. After that, watershed segmentation is 

applied to the morphological processed image in order to 

provide optimal segmentation fitted to shapes of individual 

paddy field. 

 

3.3.2. Majority voting within each segment 

In each segment, multiple classes from pixelwise 

classification may be combined. As we mentioned before, 

since the growth stage inside each segment is almost same in 

general, we apply the majority voting method to decide an 

optimal class. On the other hand, non-segmented regions are 

not applied the majority voting.  

 

3.4. Semisupervised self-learning with segmentation map  
 

Under the condition that the number of training data is not 

enough for classification with high robustness, increasing the 

training data in processing scheme is one of the key to 

improve the accuracy and robustness. In order to solve this 

problem, some studies conducted semisupervised 

classification method, especially semisupervised self-

learning in which additional training data are decided by 

using neighbors of labeled samples and pixelwise 

classification map [6]. In this study, we focus on 

segmentation of paddy field and the results of the majority 

voting. During the process of majority voting within each 

segment, if almost all the classifiers agree, we can decide that 
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the results of majority voting provides a corresponding class 

label with high reliability to the segment. On the other hand, 

if most of the classifiers don’t agree, the results of majority 

voting may not be enough reliable. In the high reliable case, 

the minority classes can be identified as wrong results derived 

from luck of optimal training data. Therefore, these pixels 

having minority classes are added to training data of the 

pixelwise classification with a correct label which is a major 

class in the segment in order to reinforce performance of the 

classification. This process can increase the training data with 

high reliability. Fig. 2 shows the graphical examples. 

 

 
Fig. 2. Graphical example of self-leaning process 

 

4. RESULTS AND DISCUSSION 

 

4.1. Pixelwise classification 

 

The 78 surveyed quadrats were classified in 6 classes. Table 

2 shows the number of training data in each class. 

 

Table 2. Number of training samples by growth stage 

Growth 

stage 

Vegetative Reproductive Ripening 

mid late early late early mid 

Number 16 52 84 44 76 27 

 

For comparing accuracy of the classification between 

SDA and SVM, “Closed Test” and “Open Test” were 

conducted. “Closed Test” uses all the data for both training 

data and test data. In “Open Test”, every pixel in four-fifth of 

all the quadrats in each class is used for training data and the 

every pixel in remaining one-fifth quadrats is used for test 

data. In this study, combination of training and test quadrats 

was decided randomly in 100 times.   

The results of “Closed Test” and “Open Test” are shown 

in Table 3. From this results, SVM provides high accuracy in 

some classes. However, in overall accuracy, SDA provides 

better performance than SVM. This means SDA has enough 

potential in terms of generalization. 

 

Table 3. Comparison between classification models 

 
Closed Test Open Test 

SVM SDA SVM SDA 

Vegetative 
mid 87.5% 93.8% 87.0% 86.5% 

late 59.6% 71.2% 56.0% 64.9% 

Reproductive 
early 88.1% 95.2% 83.1% 80.2% 

late 63.6% 93.2% 53.8% 85.9% 

Ripening 
early 93.4% 90.8% 92.8% 85.3% 

mid 85.2% 92.6% 81.5% 76.8% 

Overall accuracy 80.6% 89.3% 76.3% 79.4% 

 

4.2. Semisupervised classification 

 

Proposed segmentation method for paddy field was 

conducted to the hyperspectral image. In this study, 

considering the local condition such as typical size of paddy 

field and comparing individual bands, we selected 7 x 7 

window size of the high pass filter and apply this filter to band 

110 (center wavelength is 2,265 nm) of the hyperspectral data. 

Fig. 3 shows the obtained segmentation map. 

 

 
Fig. 3. (a) Reflectance data (band 110), (b) segmentation of 

paddy field 

 

Moreover, pixel-based classification map by using SDA 

shown in Fig. 4(a), which shows noisy classification pattern, 

is improved by the majority voting with the pixelwise 

classification map and the segmentation map, as shown in Fig. 

4(b). However, some areas in the corrected image have little 

consistency with neighbor pixels.  

To improve this phenomenon, semisupervised self-

learning with the pixelwise classification map, the corrected 

map provided by the majority voting, and the segmentation 

map, is applied  For selection of the segmentation with high 

reliability, a threshold is necessary for ratio of pixels with a 

majority class to all pixels in the segment is set to 80 %. The 

obtained classification map is shown in Fig. 5(a), and Fig. 

5(b) is the results provided by applying majority voting to the 

classification map. For comparison between with and without 

semisupervised self-learning, Fig. 5(c) and (d) show those 

extended images. These results show our proposed methods 
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have better consistency with the neighbor pixels and local 

conditions.  

 

 
Fig. 4. Classification map (a) pixelwise classification, (b) 

applied majority voting 

 

 
Fig. 5. (a) Semisupervised classification map, (b) applied 

majority voting, (c) an extend image of Fig. 4.(b), (d) an 

extended image of (b) 

 

5. CONCLUSION 

 

This paper has presented the efficiency of semisupervised 

self-learning for paddy field analysis with hyperspectral data. 

In the pixelwise classification, SDA performed high accuracy 

and generalization as shown in the results of “Open Test”. 

Furthermore the post classification, such as majority voting 

with segmentation map, and semisupervised self-learning 

showed high consistency with the neighbor pixels and local 

conditions. The number of field survey plots as training and 

test data was enough for evaluation of pixelwise classification, 

however validating the accuracy of our proposed 

semisupervised classification needs more field survey plots 

or additional GIS data. Moreover, we understood radiometric 

distortion in each stripe data obtained by not only airborne 

hyperspectral sensor and radiometric adjustment between 

those stripe data during mosaic process have much impact to 

accuracy of classification. On the other hands, recently 

hyperspectral data captured by airborne or spaceborne sensor 

but also sensors mounted on UAV is getting to be available 

for research. The use of UAV has potential for making easy 

to collect data and decreasing the cost for survey. Our future 

work is to challenge the problems by using those benefits of 

UAV observation. 
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